Use of a generative pre-trained transformer-based virtual patient for health assessment and communication training in nursing education: A mixed-methods study

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Nurse Education in Practice vol. 88 (Oct 2025), p. 104536-104544
Egile nagusia: Kim, Jiyoung
Beste egile batzuk: Won, Jiyeong, Lee, Yuran
Argitaratua:
Elsevier Limited
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3270292436
003 UK-CbPIL
022 |a 1471-5953 
022 |a 1873-5223 
024 7 |a 10.1016/j.nepr.2025.104536  |2 doi 
035 |a 3270292436 
045 2 |b d20251001  |b d20251031 
084 |a 170342  |2 nlm 
100 1 |a Kim, Jiyoung 
245 1 |a Use of a generative pre-trained transformer-based virtual patient for health assessment and communication training in nursing education: A mixed-methods study 
260 |b Elsevier Limited  |c Oct 2025 
513 |a Journal Article 
520 3 |a Aim This study evaluated the use of a generative pre-trained transformer (GPT)-based virtual patient in nursing education. Background In nursing education, conventional training methods such as interactions with real-life or standardized patients exhibit limitations such as psychological distress, repetitive training and insufficient cost- and time-effectiveness. Because of their capacity to emulate human-like dialogue, GPTs have emerged as a valuable resource for educational nursing activities. Design This study employed a mixed-methods design. Methods A GPT-based virtual patient with acute appendicitis was included. Twenty-eight new prospective nurses in South Korea, equipped with a head-mounted display, evaluated and communicated with the virtual patient. Usability, perceived virtual learning environment and self-efficacy in communication were measured. The GPT-generated dialogues and open-ended questions were subjected to qualitative analysis. Results Among the subfactors of usability, the subdomains of perceived accessibility of functions and perceived virtual learning environments achieved high scores. Furthermore, a notable increase in self-efficacy for communication was observed (t = -2.82, p = .009). The participants' experiences with the GPT-based virtual patient were divided into "educational effects and learner experience" and "technical limitations and the need for improvement." Evaluation of the dialogue between the GPT-based virtual patient and participants revealed that the readability subdomain achieved the highest score, whereas the accuracy subdomain achieved the lowest score. Conclusions The findings of the present study provide insights into the advantages of employing GPT-based virtual patients, particularly regarding the perceived accessibility of functions, high scores for immersion and enhanced self-efficacy of communication. 
653 |a Students 
653 |a Nurses 
653 |a Computer assisted instruction--CAI 
653 |a Readability 
653 |a Qualitative research 
653 |a Instructional design 
653 |a Education 
653 |a Learning environment 
653 |a Virtual reality 
653 |a Medical education 
653 |a Patient safety 
653 |a Cost analysis 
653 |a Standardized patients 
653 |a Health education 
653 |a Patients 
653 |a Health information 
653 |a Psychological distress 
653 |a Language 
653 |a Nursing education 
653 |a Training 
653 |a Pilot projects 
653 |a Verbal communication 
653 |a Simulated clients 
653 |a Mixed methods research 
653 |a Nursing 
653 |a Abdomen 
653 |a Internet 
653 |a Access 
653 |a Communication 
653 |a Natural language 
653 |a Skills 
653 |a Appendicitis 
653 |a Artificial intelligence 
653 |a Educational objectives 
653 |a Self-efficacy 
653 |a Mental health 
653 |a Nursing care 
653 |a Therapeutic communication 
653 |a Dialogue 
653 |a Learning management systems 
653 |a Health risk assessment 
653 |a Computer Simulation 
653 |a Educational Opportunities 
653 |a Literature Reviews 
653 |a Data Collection 
653 |a Sample Size 
653 |a Cognitive Processes 
653 |a Likert Scales 
653 |a Medical Evaluation 
653 |a Natural Language Processing 
653 |a Role Playing 
653 |a Educational Assessment 
653 |a Language Processing 
653 |a Educational Environment 
653 |a Learner Engagement 
653 |a Influence of Technology 
653 |a Pain 
653 |a Educational Technology 
653 |a Communication Skills 
653 |a Feedback (Response) 
653 |a Educational Needs 
700 1 |a Won, Jiyeong 
700 1 |a Lee, Yuran 
773 0 |t Nurse Education in Practice  |g vol. 88 (Oct 2025), p. 104536-104544 
786 0 |d ProQuest  |t Sociology Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3270292436/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3270292436/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3270292436/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch