Identifying predictors of nursing dropout and attrition before and after Bachelor's Graduation based on the IPOD model: A machine learning approach

Uloženo v:
Podrobná bibliografie
Vydáno v:Nurse Education in Practice vol. 88 (Oct 2025), p. 104580-104597
Hlavní autor: Arian, Mahdieh
Další autoři: Kamali, Azadeh, Dalir, Zahra, Hajiabadi, Fatemeh, Mazloum, Seyed Reza
Vydáno:
Elsevier Limited
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3270292467
003 UK-CbPIL
022 |a 1471-5953 
022 |a 1873-5223 
024 7 |a 10.1016/j.nepr.2025.104580  |2 doi 
035 |a 3270292467 
045 2 |b d20251001  |b d20251031 
084 |a 170342  |2 nlm 
100 1 |a Arian, Mahdieh  |u Department of Medical-Surgical Nursing, School of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran 
245 1 |a Identifying predictors of nursing dropout and attrition before and after Bachelor's Graduation based on the IPOD model: A machine learning approach 
260 |b Elsevier Limited  |c Oct 2025 
513 |a Journal Article 
520 3 |a Aim To identify predictors of academic dropout before graduation and professional attrition after graduation among nursing students, using the theoretical IPOD model and a machine learning approach. Background Academic dropout and professional attrition are global challenges. Design A retrospective study design. Method This study included 878 undergraduate nursing students enrolled between 2007 and 2018. Data were collected from Education Department records and follow-up interviews conducted via phone, email, or social media platforms. To predict academic dropout before graduation, four machine learning models were used: Extreme Gradient Boosting (XGBoost), Support Vector Machine (SVM), Decision Tree (DT), and Multinomial Logistic Regression (mLR). To predict professional attrition after graduation, Random Forest (RF), SVM, DT, and Binary Logistic Regression (BLR) models were applied. Outcomes The academic dropout rate was 2.2 %, while the professional attrition rate was 28.3 %. The XGBoost model, with 91 % accuracy, identified dropout predictors including a higher ratio of failed semesters to total semesters, lower GPA in the first and second semesters, younger age at admission, abnormal early academic status, tuition payment, and male gender. The Random Forest model, with 90 % accuracy, linked professional attrition to higher clinical competency, higher overall GPA, longer waiting time before employment, job burnout, and longer work experience. Conclusions Academic performance indicators, particularly during the early semesters, were associated with nursing student dropout, while professional factors such as job burnout and employment delays were linked to post-graduation attrition. These findings may inform targeted interventions to improve retention across both academic and professional stages. 
651 4 |a Iran 
653 |a Academic achievement 
653 |a Students 
653 |a Email 
653 |a Attrition 
653 |a Shortages 
653 |a College students 
653 |a Employment 
653 |a Professional development 
653 |a Burnout 
653 |a Performance indicators 
653 |a Work experience 
653 |a Entrance examinations 
653 |a Social media 
653 |a Workforce 
653 |a Nurses 
653 |a Algorithms 
653 |a Learning 
653 |a Midwifery 
653 |a Accuracy 
653 |a Nursing education 
653 |a Dropping out 
653 |a Grades (Scholastic) 
653 |a Digital audio players 
653 |a Nursing 
653 |a Work 
653 |a Machine learning 
653 |a Decision making 
653 |a Nursing care 
653 |a Nursing schools 
653 |a Data collection 
653 |a Tuition 
653 |a Admissions policies 
653 |a Career advancement 
653 |a Regression analysis 
653 |a Attrition (Research Studies) 
653 |a Doctoral Programs 
653 |a Academic Records 
653 |a Graduation 
653 |a Job Satisfaction 
653 |a Artificial Intelligence 
653 |a Graduate Surveys 
653 |a Dropouts 
653 |a Career Change 
653 |a Individual Characteristics 
653 |a Content Validity 
653 |a Educational Quality 
653 |a Undergraduate Students 
653 |a Graduates 
653 |a Learning Experience 
653 |a Environmental Influences 
653 |a Intention 
653 |a Data Analysis 
653 |a Labor Force Development 
653 |a Educational Experience 
653 |a College Science 
700 1 |a Kamali, Azadeh  |u Department of Nursing, Bojnurd Faculty of Nursing, North Khorasan University of Medical Sciences, Bojnurd, Iran 
700 1 |a Dalir, Zahra  |u Department of Medical-Surgical Nursing, School of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran 
700 1 |a Hajiabadi, Fatemeh  |u Department of Medical-Surgical Nursing, School of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran 
700 1 |a Mazloum, Seyed Reza  |u Department of Medical-Surgical Nursing, School of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran 
773 0 |t Nurse Education in Practice  |g vol. 88 (Oct 2025), p. 104580-104597 
786 0 |d ProQuest  |t Sociology Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3270292467/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3270292467/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3270292467/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch