From Tacit to Explicit: Using Live Documentation and Feedback Loops to Facilitate Knowledge Transfer

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:European Conference on Knowledge Management vol. 1 (Sep 2025), p. 965-973
المؤلف الرئيسي: Stürzebecher, Pia
مؤلفون آخرون: Bayrhammer, Eric, Brauckmann, Nils
منشور في:
Academic Conferences International Limited
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3270512472
003 UK-CbPIL
022 |a 2048-8963 
022 |a 2048-8971 
035 |a 3270512472 
045 2 |b d20250901  |b d20250930 
084 |a 183536  |2 nlm 
100 1 |a Stürzebecher, Pia 
245 1 |a From Tacit to Explicit: Using Live Documentation and Feedback Loops to Facilitate Knowledge Transfer 
260 |b Academic Conferences International Limited  |c Sep 2025 
513 |a Conference Proceedings 
520 3 |a The preservation and structured use of tacit knowledge (TK) is a critical challenge in industrial environments contending with increasing automation and a skilled labor shortage. The loss of undocumented expertise, especially in circular economy applications such as disassembly processes, threatens process efficiency, adaptability and quality. This paper presents a knowledge management approach that combines industrial engineering methods with Industry 4.0 technologies to capture and integrate TK into semiautomated disassembly systems digitally. Taking Fraunhofer IFF's iDeaR project as a case study, a demonstrator is developed to document and convert experts' actions during PC disassembly into machine-readable formats. The approach integrates live documentation, feedback loops and digital twins to systematically capture contextual problem-solving strategies, enabling their reuse and continuous learning in technical systems. Tacit knowledge is structured using a dedicated Asset Administration Shell (AAS) submodel, comprising situational context, problem description, solution, guidance and benefit. This facilitates contextual reuse across diverse scenarios. The demonstrator architecture links captured knowledge with product, process and resource twins and provides contextsensitive support through modular software applications. Expert-reviewed feedback loops transform raw data into validated disassembly instructions, checklists and training content. A user-friendly interface facilitates intuitive data entry and practical applicability in industrial settings. Results from a workshop-based analysis of disassembly steps confirm that both implicit and explicit knowledge can be meaningfully structured and evaluated for automation capability. The approach preserves expertise, enhances organizational learning and contributes to more adaptive, error-resistant processes. Future developments include AI-assisted storytelling and enhanced sensor integration to further improve feedback quality and reduce editing. This paper thus contributes to the design of intelligent knowledge systems for (semi)automated environments and highlights the value of digital knowledge models in industrial transformation. 
653 |a Problem solving 
653 |a Software 
653 |a Documentation 
653 |a Tacit knowledge 
653 |a Feedback loops 
653 |a Industry 4.0 
653 |a Knowledge management 
653 |a Explicit knowledge 
653 |a Organizational learning 
653 |a Automation 
653 |a Circular economy 
653 |a Feedback 
653 |a Efficiency 
653 |a Industrial engineering 
653 |a Dismantling 
653 |a Learning 
653 |a Digital twins 
653 |a Employees 
653 |a Sensors 
653 |a Decision making 
653 |a Labor shortages 
653 |a Industrial applications 
653 |a Knowledge sharing 
700 1 |a Bayrhammer, Eric 
700 1 |a Brauckmann, Nils 
773 0 |t European Conference on Knowledge Management  |g vol. 1 (Sep 2025), p. 965-973 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3270512472/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3270512472/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3270512472/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch