Analysing Ireland's PISA 2022 Mathematics Profile Using AI-enhanced Assessment Modelling

Guardat en:
Dades bibliogràfiques
Publicat a:OECD Education Working Papers no. 337 (2025), p. 1-29
Autor principal: Okubo, Tomoya
Altres autors: Reinertsen, Nata
Publicat:
Organisation for Economic Cooperation and Development (OECD)
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3270513756
003 UK-CbPIL
022 |a 1993-9019 
035 |a 3270513756 
045 2 |b d20250101  |b d20251231 
084 |a 109742  |2 nlm 
100 1 |a Okubo, Tomoya 
245 1 |a Analysing Ireland's PISA 2022 Mathematics Profile Using AI-enhanced Assessment Modelling 
260 |b Organisation for Economic Cooperation and Development (OECD)  |c 2025 
513 |a Feature 
520 3 |a International large-scale assessments excel at robust cross-national comparisons, and detailed insight into students learning progressions emerges when paired with complementary diagnostic approaches. This study employed an Al-enhanced approach-the Collective Intelligence Model for Education (CIME)-to transform item-level responses from students in Ireland who participated in the PISA 2022 mathematics assessment into multidimensional diagnostic profiles. The profiles highlighted pronounced strengths in chance and probability and identified areas for continued development in geometric relationships and measurement. Students demonstrated proficiency in working with data and established mathematical representations, and showed developing proficiency in devising solution strategies, formalising complex situations, and applying mathematical models to structure and analyse real-world contexts. The findings indicate that Al-enhanced profiling yields fine-grained, policy-relevant diagnostics that complement headline scores and inform curriculum planning and system-level improvement. 
610 4 |a Organization for Economic Cooperation & Development 
651 4 |a Ireland 
653 |a Problem solving 
653 |a Curricula 
653 |a Mathematics 
653 |a Automation 
653 |a Cognition & reasoning 
653 |a Large language models 
653 |a Learning 
653 |a Literacy 
653 |a Artificial intelligence 
653 |a Journalism 
653 |a Computer Simulation 
653 |a Educational Quality 
653 |a Mathematics Skills 
653 |a Computer Assisted Testing 
653 |a Curriculum Development 
653 |a Geometric Concepts 
653 |a Inferences 
653 |a Curriculum Design 
653 |a Addition 
653 |a Learning Processes 
653 |a International Assessment 
653 |a Mathematics Achievement 
653 |a Mathematics Education 
653 |a Educational Change 
653 |a Benchmarking 
653 |a Misconceptions 
653 |a Evidence 
653 |a Arithmetic 
653 |a Numeracy 
653 |a Feedback (Response) 
653 |a Educational Assessment 
653 |a Mathematical Models 
653 |a Mathematical Concepts 
653 |a Educational Facilities Improvement 
700 1 |a Reinertsen, Nata 
773 0 |t OECD Education Working Papers  |g no. 337 (2025), p. 1-29 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3270513756/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3270513756/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3270513756/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch