Biases in neural population codes with a few active neurons

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS Computational Biology vol. 21, no. 4 (Apr 2025), p. e1012969-e1012982
Autor principal: Keemink, Sander W
Otros Autores: Mark C.W. van Rossum
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3270580072
003 UK-CbPIL
022 |a 1553-734X 
022 |a 1553-7358 
024 7 |a 10.1371/journal.pcbi.1012969  |2 doi 
035 |a 3270580072 
045 2 |b d20250401  |b d20250430 
084 |a 174831  |2 nlm 
100 1 |a Keemink, Sander W 
245 1 |a Biases in neural population codes with a few active neurons 
260 |b Public Library of Science  |c Apr 2025 
513 |a Journal Article 
520 3 |a Throughout the brain information is coded in the activity of multiple neurons at once, so called population codes. Population codes are a robust and accurate way of coding information. One can evaluate the quality of population coding by trying to read out the code with a decoder, and estimate the encoded stimulus. In particular when neurons are noisy, coding accuracy has extensively been evaluated in terms of the trial-to-trial variation in the estimate. While most decoders yield unbiased estimators if many neurons are actived, when only a few neurons are active, biases readily emerge. That is, even after averaging, a systematic difference between the true stimulus and its estimate remains. We characterize the shape of this bias for different encoding models (rectified cosine tuning and von Mises functions) and show that it can be both attractive or repulsive for different stimulus values. Biases appear for maximum likelihood and Bayesian decoders. The biases have a non-trivial dependence on noise. We also introduce a technique to estimate the bias and variance of Bayesian least square decoders. The work is of interest to those studying neural populations with a few active neurons. 
653 |a Neurons 
653 |a Decoders 
653 |a Bias 
653 |a Bayesian analysis 
653 |a Maximum likelihood decoding 
653 |a Estimates 
653 |a Mathematical models 
653 |a Neural coding 
653 |a Environmental 
700 1 |a Mark C.W. van Rossum 
773 0 |t PLoS Computational Biology  |g vol. 21, no. 4 (Apr 2025), p. e1012969-e1012982 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3270580072/abstract/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3270580072/fulltext/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3270580072/fulltextPDF/embedded/CH9WPLCLQHQD1J4S?source=fedsrch