Nanometer scale difference in myofilament lattice structure of muscle alters muscle function in a spatially explicit model

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS Computational Biology vol. 21, no. 4 (Apr 2025), p. e1012862-e1012885
Autor principal: Travis Carver Tune
Otros Autores: Sponberg, Simon
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3270580275
003 UK-CbPIL
022 |a 1553-734X 
022 |a 1553-7358 
024 7 |a 10.1371/journal.pcbi.1012862  |2 doi 
035 |a 3270580275 
045 2 |b d20250401  |b d20250430 
084 |a 174831  |2 nlm 
100 1 |a Travis Carver Tune 
245 1 |a Nanometer scale difference in myofilament lattice structure of muscle alters muscle function in a spatially explicit model 
260 |b Public Library of Science  |c Apr 2025 
513 |a Journal Article 
520 3 |a Crossbridge binding, state transitions, and force in active muscle is dependent on the radial spacing between the myosin-containing thick filament and the actin-containing thin filament in the filament lattice. This radial spacing has been previously shown through spatially explicit modeling and experimental efforts to greatly affect quasi-static, isometric, force production in muscle. It has recently been suggested that this radial spacing might also be able to drive differences in mechanical function, or net work, under dynamic oscillations like those which occur in muscles in vivo. However, previous spatially explicit models either had no radial spacing dependence, meaning the radial spacing could not be investigated, or did include radial spacing dependence but could not reproduce in vivo net work during dynamic oscillations and only investigated isometric contractions. Here we show the first spatially explicit model to include radial crossbridge dependence which can produce mechanical function similar to real muscle. Using this spatially explicit model of a half sarcomere, we show that when oscillated at strain amplitudes and frequencies like those in the main flight muscles of the hawkmoth Manduca sexta, mechanical function (net work) does depend on the lattice spacing. In addition, since the trajectory of lattice spacing changes during dynamic oscillation can vary from organism to organism, we can prescribe a trajectory of lattice spacing changes in the spatially explicit half sarcomere model and investigate the extent to which the time course of lattice spacing changes can affect mechanical function. We simulated a half sarcomere undergoing dynamic oscillations and prescribed the Poisson’s ratio of the lattice to be either 0 (constant lattice spacing) or 0.5 (isovolumetric lattice spacing changes). We also simulated net work using lattice spacing data taken from M. sexta which has a variable Poisson’s ratio. Our simulation results indicate that the lattice spacing can change the mechanical function of muscle, and that in some cases a 1 nm difference can switch the net work of the half sarcomere model from positive (motor-like) to negative (brake-like). 
610 4 |a National Science Foundation 
653 |a Oscillations 
653 |a Muscles 
653 |a Poisson's ratio 
653 |a Myosin 
653 |a Actin 
653 |a Lattice theory 
653 |a Muscle contraction 
653 |a Force 
653 |a Muscle function 
653 |a In vivo methods and tests 
653 |a Mechanical properties 
653 |a Environmental 
700 1 |a Sponberg, Simon 
773 0 |t PLoS Computational Biology  |g vol. 21, no. 4 (Apr 2025), p. e1012862-e1012885 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3270580275/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3270580275/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3270580275/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch