Exploring new routes in fractional modeling: analytical solutions of Burgers-type systems via Caputo-Hadamard and ϕ-Caputo derivatives

Salvato in:
Dettagli Bibliografici
Pubblicato in:Boundary Value Problems vol. 2025, no. 1 (Dec 2025), p. 166
Autore principale: Alshammari, Mohammad
Altri autori: Alshammari, Tariq S., Alshammari, Saleh, Alsheekhhussain, Zainab, Shah, Rasool, Jebran, Samaruddin, Al-sawalha, M. Mossa
Pubblicazione:
Hindawi Limited
Soggetti:
Accesso online:Citation/Abstract
Full Text
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3270621309
003 UK-CbPIL
022 |a 1687-2762 
022 |a 1687-2770 
024 7 |a 10.1186/s13661-025-02149-w  |2 doi 
035 |a 3270621309 
045 2 |b d20251201  |b d20251231 
084 |a 130309  |2 nlm 
100 1 |a Alshammari, Mohammad  |u University of Ha’il, Department of Mathematics, College of Science, Ha’il, Saudi Arabia (GRID:grid.443320.2) (ISNI:0000 0004 0608 0056) 
245 1 |a Exploring new routes in fractional modeling: analytical solutions of Burgers-type systems via Caputo-Hadamard and <i>ϕ</i>-Caputo derivatives 
260 |b Hindawi Limited  |c Dec 2025 
513 |a Journal Article 
520 3 |a The study of fractional-order partial differential equations has gained significant attention due to its ability to model complex physical systems with memory effects and hereditary properties. Among these systems is the Burgers equation, which serves as a fundamental model for describing nonlinear waves, turbulence, and the behavior of viscous fluids. Recent advancements in fractional calculus have led to the development of generalized fractional operators, such as the Caputo-Hadamard and ϕ-Caputo fractional derivatives. These operators offer greater flexibility and precision in capturing temporal and spatial nonlocal effects. This paper provides a comprehensive review of analytical and semi-analytical methods for solving these systems, with a particular emphasis on the Residual Power Series Method (RPSM) and the New Iterative Method (NIM). Both methods demonstrate superior convergence rates and accuracy. By combining generalized fractional operators with iterative algorithms, new approaches can be developed to model real-world phenomena in fields like physics, engineering, and applied mathematics. This work not only summarizes recent progress but also establishes a strong foundation for future research into complex fractional-order systems. 
653 |a Calculus 
653 |a Iterative algorithms 
653 |a Partial differential equations 
653 |a Mathematical analysis 
653 |a Iterative methods 
653 |a Operators (mathematics) 
653 |a Applications of mathematics 
653 |a Power series 
653 |a Fluid flow 
653 |a Exact solutions 
653 |a Methods 
653 |a Fractional calculus 
653 |a Algorithms 
653 |a Burgers equation 
653 |a Viscous fluids 
653 |a Derivatives 
700 1 |a Alshammari, Tariq S.  |u University of Ha’il, Department of Mathematics, College of Science, Ha’il, Saudi Arabia (GRID:grid.443320.2) (ISNI:0000 0004 0608 0056) 
700 1 |a Alshammari, Saleh  |u University of Ha’il, Department of Mathematics, College of Science, Ha’il, Saudi Arabia (GRID:grid.443320.2) (ISNI:0000 0004 0608 0056) 
700 1 |a Alsheekhhussain, Zainab  |u University of Ha’il, Department of Mathematics, College of Science, Ha’il, Saudi Arabia (GRID:grid.443320.2) (ISNI:0000 0004 0608 0056) 
700 1 |a Shah, Rasool  |u Abdul Wali Khan University Mardan, Department of Mathematics, Mardan, Pakistan (GRID:grid.440522.5) (ISNI:0000 0004 0478 6450) 
700 1 |a Jebran, Samaruddin  |u Kabul University, Faculty of Mathematics, Kabul, Afghanistan (GRID:grid.442864.8) (ISNI:0000 0001 1181 4542) 
700 1 |a Al-sawalha, M. Mossa  |u University of Ha’il, Department of Mathematics, College of Science, Ha’il, Saudi Arabia (GRID:grid.443320.2) (ISNI:0000 0004 0608 0056) 
773 0 |t Boundary Value Problems  |g vol. 2025, no. 1 (Dec 2025), p. 166 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3270621309/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3270621309/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3270621309/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch