Integrating historical archives and geospatial data to revise flood estimation equations for Philippine rivers

Guardado en:
Detalles Bibliográficos
Publicado en:Hydrology and Earth System Sciences vol. 29, no. 21 (2025), p. 6181-6201
Autor principal: Hoey, Trevor B.
Otros Autores: Tolentino, Pamela Louise M., Guardian, Esmael, Perez, John Edward G., Williams, Richard D., Boothroyd, Richard, David, Carlos Primo C., Paringit, Enrico C.
Publicado:
Copernicus GmbH
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3270751617
003 UK-CbPIL
022 |a 1027-5606 
022 |a 1607-7938 
024 7 |a 10.5194/hess-29-6181-2025  |2 doi 
035 |a 3270751617 
045 2 |b d20250101  |b d20251231 
084 |a 123631  |2 nlm 
100 1 |a Hoey, Trevor B.  |u Department of Civil and Environmental Engineering, Brunel University London, London, UB8 3PH, United Kingdom 
245 1 |a Integrating historical archives and geospatial data to revise flood estimation equations for Philippine rivers 
260 |b Copernicus GmbH  |c 2025 
513 |a Journal Article 
520 3 |a Flood magnitude and frequency estimation are essential for the design of structural and nature-based flood risk management interventions and water resources planning. However, the global geography of hydrological observations is uneven, with many regions, especially in the Global South, having spatially and temporally sparse data that limit the choice of statistical methods for flood estimation. To address this data scarcity, we pool all available annual maximum flood data for the Philippines to estimate flood magnitudes at the national scale. Available river discharge data were collected from publications covering 842&#xa0;sites, with data spanning from 1908 to 2018. Of these, 466&#xa0;sites met criteria for reliable estimation of the annual maximum flood. Using the index flood approach, a range of controls was assessed at both national and regional scales using modern land cover and rainfall data sets, as well as geospatial catchment characteristics. Predictive equations for 2 to 100&#xa0;year recurrence interval floods using only catchment area as a predictor have <inline-formula><mml:math display="inline" id="M1"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn mathvariant="normal">2</mml:mn></mml:msup><mml:mo>≤</mml:mo><mml:mn mathvariant="normal">0.59</mml:mn></mml:mrow></mml:math></inline-formula>. Adding a rainfall variable, the median annual maximum 1 d rainfall, increases <inline-formula><mml:math display="inline" id="M2"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn mathvariant="normal">2</mml:mn></mml:msup></mml:mrow></mml:math></inline-formula> to between 0.56 for <inline-formula><mml:math display="inline" id="M3"><mml:mrow><mml:msub><mml:mi>Q</mml:mi><mml:mn mathvariant="normal">100</mml:mn></mml:msub></mml:mrow></mml:math></inline-formula> and 0.66 for <inline-formula><mml:math display="inline" id="M4"><mml:mrow><mml:msub><mml:mi>Q</mml:mi><mml:mn mathvariant="normal">2</mml:mn></mml:msub></mml:mrow></mml:math></inline-formula>. Very few other topographic or land use variables were significant when added to multiple regression equations. Relatively low <inline-formula><mml:math display="inline" id="M5"><mml:mrow><mml:msup><mml:mi>R</mml:mi><mml:mn mathvariant="normal">2</mml:mn></mml:msup></mml:mrow></mml:math></inline-formula> values in flood predictions are typical of studies from tropical regions. Although the Philippines exhibits regional climate variability, residuals from national predictive equations show limited spatial structure, and region-specific equations do not significantly outperform the national equations. The predictive equations are suitable for use as design equations in ungauged catchments for the Philippines, but statistical uncertainties must be reported. Our approach demonstrates how combining individually short historical records, after careful screening and exclusion of unreliable data, can generate large data sets that can produce consistent results. Extension of continuous flood records by continuous and rated monitoring is required to reduce uncertainties. However, the national-scale consistency in our results suggests that extrapolation from a small number of carefully selected catchments could provide nationally reliable predictive equations with reduced uncertainties. 
610 4 |a Bureau of Research 
651 4 |a United Kingdom--UK 
651 4 |a Indonesia 
651 4 |a Thailand 
651 4 |a Papua New Guinea 
651 4 |a Philippines 
651 4 |a Luzon 
653 |a Geography 
653 |a Climate variability 
653 |a Datasets 
653 |a Watersheds 
653 |a Estimates 
653 |a Water resources planning 
653 |a Rivers 
653 |a Hydrologic observations 
653 |a Water levels 
653 |a Risk management 
653 |a Land use 
653 |a Flood risk 
653 |a Uncertainty 
653 |a River flow 
653 |a Climate change 
653 |a Archives & records 
653 |a Catchment areas 
653 |a Water resources 
653 |a Frequency estimation 
653 |a Precipitation 
653 |a Spatial data 
653 |a Flood forecasting 
653 |a Tropical environment 
653 |a River discharge 
653 |a Land cover 
653 |a Regional climates 
653 |a Statistical methods 
653 |a Annual rainfall 
653 |a Floods 
653 |a Stream flow 
653 |a Flood predictions 
653 |a Statistics 
653 |a Catchments 
653 |a Rainfall data 
653 |a Flood management 
653 |a Water discharge 
653 |a Flood magnitude 
653 |a Rainfall 
653 |a Flood estimation 
653 |a Maximum probable flood 
653 |a Tropical environments 
653 |a Hydrology 
653 |a Environmental risk 
653 |a Hydrologic data 
653 |a Statistical analysis 
653 |a Flood data 
653 |a Regional differences 
653 |a Environmental 
700 1 |a Tolentino, Pamela Louise M.  |u School of Geographical and Earth Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom; National Institute of Geological Sciences, University of the Philippines, Diliman, the Philippines 
700 1 |a Guardian, Esmael  |u National Institute of Geological Sciences, University of the Philippines, Diliman, the Philippines 
700 1 |a Perez, John Edward G.  |u National Institute of Geological Sciences, University of the Philippines, Diliman, the Philippines; University of Vienna, Vienna, Austria 
700 1 |a Williams, Richard D.  |u School of Geographical and Earth Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom; Earth Sciences New Zealand, Kirikiriroa / Hamilton, 3216, Aotearoa / New Zealand 
700 1 |a Boothroyd, Richard  |u Department of Geography and Planning, University of Liverpool, Liverpool, L69 7ZT, United Kingdom 
700 1 |a David, Carlos Primo C.  |u National Institute of Geological Sciences, University of the Philippines, Diliman, the Philippines 
700 1 |a Paringit, Enrico C.  |u Department of Geodetic Engineering, University of the Philippines, Diliman, the Philippines; Department of Science and Technology – Philippine Council for Industry, Energy and Emerging Technology Research and Development, Manila, the Philippines 
773 0 |t Hydrology and Earth System Sciences  |g vol. 29, no. 21 (2025), p. 6181-6201 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3270751617/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3270751617/fulltext/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3270751617/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch