Artificial intelligence in healthcare: transforming patient safety with intelligent systems—A systematic review

Gardado en:
Detalles Bibliográficos
Publicado en:Frontiers in Medicine vol. 11 (Jan 2025), p. 1522554-1522566
Autor Principal: De Micco, Francesco
Outros autores: Gianmarco Di Palma, Ferorelli, Davide, De Benedictis, Anna, Tomassini, Luca, Tambone, Vittoradolfo, Cingolani, Mariano, Scendoni, Roberto
Publicado:
Frontiers Media SA
Materias:
Acceso en liña:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3270815814
003 UK-CbPIL
022 |a 2296-858X 
024 7 |a 10.3389/fmed.2024.1522554  |2 doi 
035 |a 3270815814 
045 2 |b d20250101  |b d20250131 
100 1 |a De Micco, Francesco  |u Research Unit of Bioethics and Humanities, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy, Department of Clinical Affair, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy 
245 1 |a Artificial intelligence in healthcare: transforming patient safety with intelligent systems—A systematic review 
260 |b Frontiers Media SA  |c Jan 2025 
513 |a Journal Article 
520 3 |a IntroductionAdverse events in hospitals significantly compromise patient safety and trust in healthcare systems, with medical errors being a leading cause of death globally. Despite efforts to reduce these errors, reporting remains low, and effective system changes are rare. This systematic review explores the potential of artificial intelligence (AI) in clinical risk management.MethodsThe systematic review was conducted using the PRISMA Statement 2020 guidelines to ensure a comprehensive and transparent approach. We utilized the online tool Rayyan for efficient screening and selection of relevant studies from three different online bibliographic.ResultsAI systems, including machine learning and natural language processing, show promise in detecting adverse events, predicting medication errors, assessing fall risks, and preventing pressure injuries. Studies reveal that AI can improve incident reporting accuracy, identify high-risk incidents, and automate classification processes. However, challenges such as socio-technical issues, implementation barriers, and the need for standardization persist.DiscussionThe review highlights the effectiveness of AI in various applications but underscores the necessity for further research to ensure safe and consistent integration into clinical practices. Future directions involve refining AI tools through continuous feedback and addressing regulatory standards to enhance patient safety and care quality. 
651 4 |a United States--US 
653 |a Machine learning 
653 |a Patient safety 
653 |a Accuracy 
653 |a Artificial intelligence 
653 |a Pharmacy 
653 |a Data mining 
653 |a Publications 
653 |a Classification 
653 |a Hospitals 
653 |a Taxonomy 
653 |a Natural language processing 
653 |a Algorithms 
653 |a Risk management 
653 |a Monitoring systems 
653 |a Medical errors 
653 |a Systematic review 
700 1 |a Gianmarco Di Palma  |u Research Unit of Bioethics and Humanities, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy, Department of Public Health, Experimental and Forensic Sciences, University of Pavia, Pavia, Italy 
700 1 |a Ferorelli, Davide  |u Interdisciplinary Department of Medicine (DIM), Section of Legal Medicine, University of Bari “Aldo Moro”, Bari, Italy 
700 1 |a De Benedictis, Anna  |u Research Unit of Bioethics and Humanities, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy, Research Unit of Nursing Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy 
700 1 |a Tomassini, Luca  |u International School of Advanced Studies, University of Camerino, Camerino, Italy 
700 1 |a Tambone, Vittoradolfo  |u Research Unit of Bioethics and Humanities, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy 
700 1 |a Cingolani, Mariano  |u Department of Law, Institute of Legal Medicine, University of Macerata, Macerata, Italy 
700 1 |a Scendoni, Roberto  |u Department of Law, Institute of Legal Medicine, University of Macerata, Macerata, Italy, Italian Network for Safety in Healthcare (INSH), Coordination of Marche Region, Macerata, Italy 
773 0 |t Frontiers in Medicine  |g vol. 11 (Jan 2025), p. 1522554-1522566 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3270815814/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3270815814/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3270815814/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch