Dynamical mean-field theory for a highly heterogeneous neural population with graded persistent activity of the entorhinal cortex

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:PLoS Computational Biology vol. 21, no. 9 (Sep 2025), p. e1013484-e1013514
Kaituhi matua: Tomita, Futa
Ētahi atu kaituhi: Jun-nosuke Teramae
I whakaputaina:
Public Library of Science
Ngā marau:
Urunga tuihono:Citation/Abstract
Full Text
Full Text - PDF
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

MARC

LEADER 00000nab a2200000uu 4500
001 3270866720
003 UK-CbPIL
022 |a 1553-734X 
022 |a 1553-7358 
024 7 |a 10.1371/journal.pcbi.1013484  |2 doi 
035 |a 3270866720 
045 2 |b d20250901  |b d20250930 
084 |a 174831  |2 nlm 
100 1 |a Tomita, Futa 
245 1 |a Dynamical mean-field theory for a highly heterogeneous neural population with graded persistent activity of the entorhinal cortex 
260 |b Public Library of Science  |c Sep 2025 
513 |a Journal Article 
520 3 |a The entorhinal cortex serves as a major gateway connecting the hippocampus and neocortex, playing a pivotal role in episodic memory formation. Neurons in the entorhinal cortex exhibit two notable features associated with temporal information processing: a population-level ability to encode long temporal signals and a single-cell characteristic known as graded-persistent activity, where some neurons maintain activity for extended periods even without external inputs. However, the relationship between these single-cell characteristics and population dynamics has remained unclear, largely due to the absence of a framework to describe the dynamics of neural populations with highly heterogeneous time scales. To address this gap, we extend the dynamical mean field theory, a powerful framework for analyzing large-scale population dynamics, to study the dynamics of heterogeneous neural populations. By proposing an analytically tractable model of graded-persistent activity, we demonstrate that the introduction of graded-persistent neurons shifts the chaos-order phase transition point and expands the network’s dynamical region, a preferable region for temporal information computation. Furthermore, we validate our framework by applying it to a system with heterogeneous adaptation, demonstrating that such heterogeneity can reduce the dynamical regime, contrary to previous simplified approximations. These findings establish a theoretical foundation for understanding the functional advantages of diversity in biological systems and offer insights applicable to a wide range of heterogeneous networks beyond neural populations. 
651 4 |a Japan 
653 |a Neurons 
653 |a Data processing 
653 |a Heterogeneity 
653 |a Neocortex 
653 |a Populations 
653 |a Temporal lobe 
653 |a Dynamics 
653 |a Episodic memory 
653 |a Phase transitions 
653 |a Cerebral cortex 
653 |a Population dynamics 
653 |a Information processing 
653 |a Mean field theory 
653 |a Population studies 
653 |a Cortex (entorhinal) 
653 |a Environmental 
700 1 |a Jun-nosuke Teramae 
773 0 |t PLoS Computational Biology  |g vol. 21, no. 9 (Sep 2025), p. e1013484-e1013514 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3270866720/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3270866720/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3270866720/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch