M-band wavelet-based multi-view clustering of cells

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS Computational Biology vol. 21, no. 5 (May 2025), p. e1013060-e1013076
Autor principal: Liu, Tong
Otros Autores: Liu, Zihuan, Sun, Wenke, Shankar, Adeethyia, Zhao, Yongzhong, Wang, Xiaodi
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3270867506
003 UK-CbPIL
022 |a 1553-734X 
022 |a 1553-7358 
024 7 |a 10.1371/journal.pcbi.1013060  |2 doi 
035 |a 3270867506 
045 2 |b d20250501  |b d20250531 
084 |a 174831  |2 nlm 
100 1 |a Liu, Tong 
245 1 |a M-band wavelet-based multi-view clustering of cells 
260 |b Public Library of Science  |c May 2025 
513 |a Journal Article 
520 3 |a Wavelet analysis has been recognized as a widely used and promising tool in the fields of signal processing and data analysis. However, the application of wavelet-based method in single-cell RNA sequencing (scRNA-seq) data is little known. Here, we present M-band wavelet-based scRNA-seq multi-view clustering of cells (WMC). We applied for integration of M-band wavelet analysis and uniform manifold approximation and projection (UMAP) to a panel of single cell sequencing datasets by breaking up the data matrix into an approximation or low resolution component and M–1 detail or high resolution components. Our method is armed with multi-view clustering of cell types, identity, and functional states, enabling missing cell types visualization and new cell types discovery. Distinct to standard scRNA-seq workflow, our wavelet-based approach is a new addition to uncover rare cell types with a fine resolution. 
653 |a Signal processing 
653 |a Data processing 
653 |a Data analysis 
653 |a Cells 
653 |a Datasets 
653 |a Wavelet transforms 
653 |a Gene sequencing 
653 |a Clustering 
653 |a Quality control 
653 |a Decomposition 
653 |a Approximation 
653 |a Methods 
653 |a Cluster analysis 
653 |a Colorectal cancer 
653 |a Genomics 
653 |a Genes 
653 |a Visualization 
653 |a Wavelet analysis 
653 |a Environmental 
700 1 |a Liu, Zihuan 
700 1 |a Sun, Wenke 
700 1 |a Shankar, Adeethyia 
700 1 |a Zhao, Yongzhong 
700 1 |a Wang, Xiaodi 
773 0 |t PLoS Computational Biology  |g vol. 21, no. 5 (May 2025), p. e1013060-e1013076 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3270867506/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3270867506/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3270867506/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch