The Road to Autonomy: A Systematic Review Through AI in Autonomous Vehicles

Saved in:
Bibliographic Details
Published in:Electronics vol. 14, no. 21 (2025), p. 4174-4214
Main Author: Domenteanu Adrian
Other Authors: Diaconu, Paul, Florescu Margareta-Stela, Delcea Camelia
Published:
MDPI AG
Subjects:
Online Access:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nab a2200000uu 4500
001 3271026243
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14214174  |2 doi 
035 |a 3271026243 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Domenteanu Adrian  |u Department of Economic Informatics and Cybernetics, Bucharest University of Economic Studies, 010552 Bucharest, Romania 
245 1 |a The Road to Autonomy: A Systematic Review Through AI in Autonomous Vehicles 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In the last decade, the incorporation of Artificial Intelligence (AI) with autonomous vehicles (AVs) has transformed transportation, mobility, and smart mobility systems. The present study provides a systematic review of global trends, applications, and challenges at the intersection of AI, including Machine Learning (ML), Deep Learning (DL), and autonomous vehicle technologies. Using data extracted from Clarivate Analytics’ Web of Science Core Collection and a set of specific keywords related to both AI and autonomous (electric) vehicles, this paper identifies the themes presented in the scientific literature using thematic maps and thematic map evolution analysis. Furthermore, the research topics are identified using both thematic maps, as well as Latent Dirichlet Allocation (LDA) and BERTopic, offering a more faceted insight into the research field as LDA enables the probabilistic discovery of high-level research themes, while BERTopic, based on transformer-based language models, captures deeper semantic patterns and emerging topics over time. This approach offers richer insights into the systematic review analysis, while comparison in the results obtained through the various methods considered leads to a better overview of the themes associated with the field of AI in autonomous vehicles. As a result, a strong correspondence can be observed between core topics, such as object detection, driving models, control, safety, cybersecurity and system vulnerabilities. The findings offer a roadmap for researchers and industry practitioners, by outlining critical gaps and discussing the opportunities for future exploration. 
651 4 |a United States--US 
653 |a Datasets 
653 |a Bibliometrics 
653 |a Science 
653 |a Artificial intelligence 
653 |a Citation indexes 
653 |a Books 
653 |a Autonomous vehicles 
653 |a Traffic flow 
653 |a Thematic mapping 
653 |a Subscriptions 
653 |a Vehicles 
653 |a Humanities 
653 |a Deep learning 
653 |a Machine learning 
653 |a Keywords 
653 |a Energy consumption 
653 |a Conference proceedings 
653 |a Systematic review 
653 |a Social sciences 
653 |a Cybersecurity 
653 |a Autonomy 
700 1 |a Diaconu, Paul  |u Department of Accounting and Audit, Bucharest University of Economic Studies, 010552 Bucharest, Romania 
700 1 |a Florescu Margareta-Stela  |u Department of Administration and Public Management, Bucharest University of Economic Studies, 010552 Bucharest, Romania 
700 1 |a Delcea Camelia  |u Department of Economic Informatics and Cybernetics, Bucharest University of Economic Studies, 010552 Bucharest, Romania 
773 0 |t Electronics  |g vol. 14, no. 21 (2025), p. 4174-4214 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3271026243/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3271026243/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3271026243/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch