LACX: Locality-Aware Shared Data Migration in NUMA + CXL Tiered Memory

Shranjeno v:
Bibliografske podrobnosti
izdano v:Electronics vol. 14, no. 21 (2025), p. 4235-4254
Glavni avtor: Jeong Hayong
Drugi avtorji: Song Binwon, Minwoo, Jo, Heeseung, Jo
Izdano:
MDPI AG
Teme:
Online dostop:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 3271026434
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14214235  |2 doi 
035 |a 3271026434 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Jeong Hayong 
245 1 |a LACX: Locality-Aware Shared Data Migration in NUMA + CXL Tiered Memory 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In modern high-performance computing (HPC) and large-scale data processing environments, the efficient utilization and scalability of memory resources are critical determinants of overall system performance. Architectures such as non-uniform memory access (NUMA) and tiered memory systems frequently suffer performance degradation due to remote accesses stemming from shared data among multiple tasks. This paper proposes LACX, a shared data migration technique leveraging Compute Express Link (CXL), to address these challenges. LACX preserves the migration cycle of automatic NUMA balancing (AutoNUMA) while identifying shared data characteristics and migrating such data to CXL memory instead of DRAM, thereby maximizing DRAM locality. The proposed method utilizes existing kernel structures and data to efficiently identify and manage shared data without incurring additional overhead, and it effectively avoids conflicts with AutoNUMA policies. Evaluation results demonstrate that, although remote accesses to shared data can degrade performance in low-tier memory scenarios, LACX significantly improves overall memory bandwidth utilization and system performance in high-tier memory and memory-intensive workload environments by distributing DRAM bandwidth. This work presents a practical, lightweight approach to shared data management in tiered memory environments and highlights new directions for next-generation memory management policies. 
653 |a Operating systems 
653 |a Data management 
653 |a Computer centers 
653 |a Dynamic random access memory 
653 |a Data processing 
653 |a Artificial intelligence 
653 |a Migration 
653 |a Bandwidths 
653 |a Optimization 
653 |a Performance degradation 
653 |a Workloads 
653 |a Efficiency 
653 |a Memory management 
653 |a Linux 
653 |a Policies 
700 1 |a Song Binwon 
700 1 |a Minwoo, Jo 
700 1 |a Heeseung, Jo 
773 0 |t Electronics  |g vol. 14, no. 21 (2025), p. 4235-4254 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3271026434/abstract/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3271026434/fulltextwithgraphics/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3271026434/fulltextPDF/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch