Co-Optimization of Capacity and Operation for Battery-Hydrogen Hybrid Energy Storage Systems Based on Deep Reinforcement Learning and Mixed Integer Programming

Guardado en:
Bibliografiske detaljer
Udgivet i:Energies vol. 18, no. 21 (2025), p. 5638-5666
Hovedforfatter: Qian Tiantian
Andre forfattere: Zhang Kaifeng, Shi Difen, Zhang, Lei
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3271027226
003 UK-CbPIL
022 |a 1996-1073 
024 7 |a 10.3390/en18215638  |2 doi 
035 |a 3271027226 
045 2 |b d20250101  |b d20251231 
084 |a 231459  |2 nlm 
100 1 |a Qian Tiantian  |u School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China; shidifen@njxzc.edu.cn (D.S.); zl_srd@njxzc.edu.cn (L.Z.) 
245 1 |a Co-Optimization of Capacity and Operation for Battery-Hydrogen Hybrid Energy Storage Systems Based on Deep Reinforcement Learning and Mixed Integer Programming 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The hybrid energy storage system (HESS) that combines battery with hydrogen storage exploits complementary power/energy characteristics, but most studies optimize capacity and operation separately, leading to suboptimal overall performance. To address this issue, this paper proposes a bi-level co-optimization framework that integrates deep reinforcement learning (DRL) and mixed integer programming (MIP). The outer layer employs the TD3 algorithm for capacity configuration, while the inner layer uses the Gurobi solver for optimal operation under constraints. On a standalone PV–wind–load-HESS system, the method attains near-optimal quality at dramatically lower runtime. Relative to GA + Gurobi and PSO + Gurobi, the cost is lower by 4.67% and 1.31%, while requiring only 0.52% and 0.58% of their runtime; compared with a direct Gurobi solve, the cost remains comparable while runtime decreases to 0.07%. Sensitivity analysis further validates the model’s robustness under various cost parameters and renewable energy penetration levels. These results indicate that the proposed DRL–MIP cooperation achieves near-optimal solutions with orders of magnitude speedups. This study provides a new DRL–MIP paradigm for efficiently solving strongly coupled bi-level optimization problems in energy systems. 
653 |a Load 
653 |a Mathematical programming 
653 |a Integer programming 
653 |a Accuracy 
653 |a Collaboration 
653 |a Deep learning 
653 |a Dynamic programming 
653 |a Wind power 
653 |a Energy industry 
653 |a Electric vehicles 
653 |a Optimization 
653 |a Renewable resources 
653 |a Energy management 
653 |a Hydrogen 
653 |a Linear programming 
653 |a Methods 
653 |a Systems stability 
653 |a Energy storage 
653 |a Algorithms 
653 |a Alternative energy sources 
653 |a Energy consumption 
653 |a Efficiency 
700 1 |a Zhang Kaifeng  |u School of Automation, Southeast University, Nanjing 210096, China; kaifengzhang@seu.edu.cn 
700 1 |a Shi Difen  |u School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China; shidifen@njxzc.edu.cn (D.S.); zl_srd@njxzc.edu.cn (L.Z.) 
700 1 |a Zhang, Lei  |u School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China; shidifen@njxzc.edu.cn (D.S.); zl_srd@njxzc.edu.cn (L.Z.) 
773 0 |t Energies  |g vol. 18, no. 21 (2025), p. 5638-5666 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3271027226/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3271027226/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3271027226/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch