Fourth-Order Iterative Algorithms for the Simultaneous Calculation of Matrix Square Roots and Their Inverses

Guardado en:
Detalles Bibliográficos
Publicado en:Mathematics vol. 13, no. 21 (2025), p. 3370-3388
Autor principal: Zhu Jiameihui
Otros Autores: Li, Yutong, Li, Yilin, Liu, Tao, Ma, Qiang
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3271047036
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13213370  |2 doi 
035 |a 3271047036 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Zhu Jiameihui  |u School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China 
245 1 |a Fourth-Order Iterative Algorithms for the Simultaneous Calculation of Matrix Square Roots and Their Inverses 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper develops and analyzes new high-order iterative schemes for the effective evaluation of the matrix square root (MSR). By leveraging connections between the matrix sign function and the MSR, we design stable algorithms that exhibit fourth-order convergence under mild spectral conditions. Detailed error bounds and convergence analyses are provided, ensuring both theoretical rigor and numerical reliability. A comprehensive set of numerical experiments, conducted across structured and large-scale test matrices, demonstrates the superior performance of the proposed methods compared to classical approaches, both in terms of computational efficiency and accuracy. The results confirm that the proposed iterative strategies provide robust and scalable tools for practical applications requiring repeated computation of matrix square roots. 
653 |a Computational mathematics 
653 |a Approximation 
653 |a Iterative algorithms 
653 |a Data science 
653 |a Roots 
653 |a Eigenvalues 
653 |a Convergence 
653 |a Algorithms 
653 |a Iterative methods 
653 |a Efficiency 
653 |a Linear algebra 
700 1 |a Li, Yutong  |u School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China 
700 1 |a Li, Yilin  |u School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China 
700 1 |a Liu, Tao  |u School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China 
700 1 |a Ma, Qiang  |u Department of Mathematics, Harbin Institute of Technology at Weihai, Weihai 264209, China 
773 0 |t Mathematics  |g vol. 13, no. 21 (2025), p. 3370-3388 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3271047036/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3271047036/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3271047036/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch