Three-Dimensional Discrete Echo-Memristor Map: Dynamic Analysis and DSP Implementation

保存先:
書誌詳細
出版年:Mathematics vol. 13, no. 21 (2025), p. 3442-3458
第一著者: Ding Siqi
その他の著者: Meng Ke, Zhang, Minghui, Lin, Yiting, Wang, Chunpeng, Li, Qi, Gao Suo, Mou, Jun
出版事項:
MDPI AG
主題:
オンライン・アクセス:Citation/Abstract
Full Text + Graphics
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 3271047332
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13213442  |2 doi 
035 |a 3271047332 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Ding Siqi  |u School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China 
245 1 |a Three-Dimensional Discrete Echo-Memristor Map: Dynamic Analysis and DSP Implementation 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In recent years, with the development of novel hardware such as memristors, integrating chaotic systems with hardware implementations has enabled efficient and controllable generation of chaotic signals, providing new avenues for both theoretical research and engineering applications. In this work, we propose a novel memristor-based chaotic system, named the three-dimensional discrete echo-memristor map (3D-DEMM). The 3D-DEMM is capable of generating complex dynamic behaviors with self-similar attractor structures; specifically, under different parameters and initial conditions, the system produces similar attractor shapes at different amplitudes, which we refer to as an echo chaotic map. By incorporating the discrete nonlinear characteristics of memristors, the 3D-DEMM is systematically designed. We first conduct a thorough dynamic analysis of the 3D-DEMM, including attractor visualization, Lyapunov exponents, and NIST tests, to verify its chaoticity and self-similarity. Subsequently, the attractors of the 3D-DEMM are captured on a DSP platform, demonstrating discrete-time hardware simulation and real-time operation. Experimental results show that the proposed system not only exhibits highly controllable chaotic behavior but also demonstrates strong robustness in maintaining amplitude-invariant attractor shapes, providing a new theoretical and practical approach for memristor-based chaotic signal generation and applications in information security. 
610 4 |a National Institute of Standards & Technology 
653 |a Amplitudes 
653 |a Signal generation 
653 |a Real time operation 
653 |a Digital signal processing 
653 |a Hardware 
653 |a Chaos theory 
653 |a Initial conditions 
653 |a Signal processing 
653 |a Liapunov exponents 
653 |a Design 
653 |a Controllability 
653 |a Digital signal processors 
653 |a Memristors 
653 |a Self-similarity 
700 1 |a Meng Ke  |u School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, Chinagaosuo@dlpu.edu.cn (S.G.); moujun@dlpu.edu.cn (J.M.) 
700 1 |a Zhang, Minghui  |u School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, Chinagaosuo@dlpu.edu.cn (S.G.); moujun@dlpu.edu.cn (J.M.) 
700 1 |a Lin, Yiting  |u Guangdong Provincial/Zhuhai Key Laboratory of Interdisciplinary Research and Application for Data Science, Beijing Normal-Hong Kong Baptist University, Zhuhai 519087, China; yitinglin@ieee.org 
700 1 |a Wang, Chunpeng  |u Key Laboratory of Computing Power Network and Information Security, Ministry of Education, National Supercomputer Center in Jinan, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China 
700 1 |a Li, Qi  |u Key Laboratory of Computing Power Network and Information Security, Ministry of Education, National Supercomputer Center in Jinan, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China 
700 1 |a Gao Suo  |u School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, Chinagaosuo@dlpu.edu.cn (S.G.); moujun@dlpu.edu.cn (J.M.) 
700 1 |a Mou, Jun  |u School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, Chinagaosuo@dlpu.edu.cn (S.G.); moujun@dlpu.edu.cn (J.M.) 
773 0 |t Mathematics  |g vol. 13, no. 21 (2025), p. 3442-3458 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3271047332/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3271047332/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3271047332/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch