Reliability-Oriented Modeling of Bellows Compensators: A Comparative PDE-Based Study Using Finite Difference and Finite Element Methods

Shranjeno v:
Bibliografske podrobnosti
izdano v:Mathematics vol. 13, no. 21 (2025), p. 3452-3482
Glavni avtor: Sarybayev, Yerzhan Y
Drugi avtorji: Balgayev, Doszhan Y, Tkachenko, Denis Y, Martyushev, Nikita V, Malozyomov, Boris V, Beisenov, Baurzhan S, Sorokova, Svetlana N
Izdano:
MDPI AG
Teme:
Online dostop:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 3271047352
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13213452  |2 doi 
035 |a 3271047352 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Sarybayev, Yerzhan Y  |u Department of Technological Machines and Equipment, Institute of Energy and Mechanical Engineering, Satbayev University, Almaty 050013, Kazakhstan; y.sarybayev@satbayev.university (Y.Y.S.); b.beisenov@satbayev.university (B.S.B.) 
245 1 |a Reliability-Oriented Modeling of Bellows Compensators: A Comparative PDE-Based Study Using Finite Difference and Finite Element Methods 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Bellows compensators are critical components in pipeline systems, designed to absorb thermal expansions, vibrations, and pressure reflections. Ensuring their operational reliability requires accurate prediction of the stress–strain state (SSS) and stability under internal pressure. This study presents a comprehensive mathematical model for analyzing corrugated bellows compensators, formulated as a boundary value problem for a system of partial differential equations (PDEs) within the Kirchhoff–Love shell theory framework. Two numerical approaches are developed and compared: a finite difference method (FDM) applied to a reduced axisymmetric formulation to ordinary differential equations (ODEs) and a finite element method (FEM) for the full variational formulation. The FDM scheme utilizes a second-order implicit symmetric approximation, ensuring stability and efficiency for axisymmetric geometries. The FEM model, implemented in Ansys 2020 R2, provides high fidelity for complex geometries and boundary conditions. Convergence analysis confirms second-order spatial accuracy for both methods. Numerical experiments determine critical pressures based on the von Mises yield criterion and linearized buckling analysis, revealing the influence of geometric parameters (wall thickness, number of convolutions) on failure mechanisms. The results demonstrate that local buckling can occur at lower pressures than that of global buckling for thin-walled bellows with multiple convolutions, which is critical for structural reliability assessment. The proposed combined approach (FDM for rapid preliminary design and FEM for final verification) offers a robust and efficient methodology for bellows design, enhancing reliability and reducing development time. The work highlights the importance of integrating rigorous PDE-based modeling with modern numerical techniques for solving complex engineering problems with a focus on structural integrity and long-term performance. 
653 |a Reliability analysis 
653 |a Finite element method 
653 |a Accuracy 
653 |a Yield criteria 
653 |a Mathematical analysis 
653 |a Finite difference method 
653 |a Compensators 
653 |a Shell theory 
653 |a Wall thickness 
653 |a Boundary conditions 
653 |a Approximation 
653 |a Numerical analysis 
653 |a Critical components 
653 |a Buckling 
653 |a Efficiency 
653 |a Boundary value problems 
653 |a Internal pressure 
653 |a Partial differential equations 
653 |a Failure mechanisms 
653 |a Structural integrity 
653 |a Strain hardening 
653 |a Mathematical models 
653 |a Engineering 
653 |a Methods 
653 |a Finite element analysis 
653 |a Stability 
653 |a Structural reliability 
653 |a Preliminary designs 
653 |a Geometry 
700 1 |a Balgayev, Doszhan Y  |u Department of Technological Machines and Equipment, Institute of Energy and Mechanical Engineering, Satbayev University, Almaty 050013, Kazakhstan; y.sarybayev@satbayev.university (Y.Y.S.); b.beisenov@satbayev.university (B.S.B.) 
700 1 |a Tkachenko, Denis Y  |u Department of Mechanical Engineering, Institute of Energy and Mechanical Engineering, Satbayev University, Almaty 050013, Kazakhstan; d.tkachenko@satbayev.university 
700 1 |a Martyushev, Nikita V  |u Department of Information Technologies, Tomsk Polytechnic University, 634050 Tomsk, Russia 
700 1 |a Malozyomov, Boris V  |u Department of Electrotechnical Complexes, Novosibirsk State Technical University, 630073 Novosibirsk, Russia; borisnovel@mail.ru 
700 1 |a Beisenov, Baurzhan S  |u Department of Technological Machines and Equipment, Institute of Energy and Mechanical Engineering, Satbayev University, Almaty 050013, Kazakhstan; y.sarybayev@satbayev.university (Y.Y.S.); b.beisenov@satbayev.university (B.S.B.) 
700 1 |a Sorokova, Svetlana N  |u Department of Mechanical Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia; s_sorokova@tpu.ru 
773 0 |t Mathematics  |g vol. 13, no. 21 (2025), p. 3452-3482 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3271047352/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3271047352/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3271047352/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch