Design and Effect of a Resin Infiltration Method to Enhance the Interlayer Adhesion of Additively Manufactured PEEK Parts

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Polymers vol. 17, no. 21 (2025), p. 2819-2838
Egile nagusia: Tamburrino, Francesco
Beste egile batzuk: Aruanno Beatrice, Paoli Alessandro, Razionale, Armando V, Barone Sandro
Argitaratua:
MDPI AG
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3271049559
003 UK-CbPIL
022 |a 2073-4360 
024 7 |a 10.3390/polym17212819  |2 doi 
035 |a 3271049559 
045 2 |b d20250101  |b d20251231 
084 |a 231552  |2 nlm 
100 1 |a Tamburrino, Francesco 
245 1 |a Design and Effect of a Resin Infiltration Method to Enhance the Interlayer Adhesion of Additively Manufactured PEEK Parts 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study investigates post-processing treatments aimed at enhancing the mechanical properties of Polyether Ether Ketone (PEEK) parts fabricated via Fused Filament Fabrication (FFF). FFF-printed PEEK components often exhibit anisotropy and weak interlayer adhesion, which limit their structural performance. To address these issues, a resin infiltration treatment is proposed that yields improvements in flexural strength and strength-to-weight ratio across specimens with different infill percentages. The effectiveness of resin infiltration is compared to that of a thermal post-processing treatment. Experimental results indicate that, although thermal treatment enhances crystallinity, it does not substantially improve interlayer bonding or mitigate anisotropy. In contrast, resin infiltration significantly enhances flexural strength, particularly in specimens with lower infill percentages, by effectively filling pores and reinforcing interlayer adhesion. Overall, the findings demonstrate that vacuum-assisted thermosetting resin infiltration is a promising post-processing technique for improving the mechanical performance of 3D-printed PEEK, achieving a mean flexural strength of up to 34 MPa, approximately 80% higher than that of untreated specimens with 100% infill. Additionally, a cost analysis comparing both post-processing methods is presented, highlighting the cost-effectiveness of resin infiltration as a viable solution to overcome the inherent limitations of FFF-printed PEEK. 
653 |a Mechanical properties 
653 |a Fused deposition modeling 
653 |a Tensile strength 
653 |a Cooling 
653 |a Cost analysis 
653 |a Infiltration 
653 |a Investigations 
653 |a Interlayers 
653 |a Temperature 
653 |a Heat treatment 
653 |a Strength to weight ratio 
653 |a Anisotropy 
653 |a Adhesion 
653 |a Thermosetting resins 
653 |a Flexural strength 
653 |a Additive manufacturing 
653 |a Cost effectiveness 
653 |a Annealing 
653 |a Polyether ether ketones 
700 1 |a Aruanno Beatrice 
700 1 |a Paoli Alessandro 
700 1 |a Razionale, Armando V 
700 1 |a Barone Sandro 
773 0 |t Polymers  |g vol. 17, no. 21 (2025), p. 2819-2838 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3271049559/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3271049559/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3271049559/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch