Physics-Based Predictive Modeling of Gravity-Induced Sagging in Support-Free Pellet Additive Manufacturing

保存先:
書誌詳細
出版年:Polymers vol. 17, no. 21 (2025), p. 2858-2877
第一著者: Pricci Alessio
出版事項:
MDPI AG
主題:
オンライン・アクセス:Citation/Abstract
Full Text + Graphics
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 3271052206
003 UK-CbPIL
022 |a 2073-4360 
024 7 |a 10.3390/polym17212858  |2 doi 
035 |a 3271052206 
045 2 |b d20250101  |b d20251231 
084 |a 231552  |2 nlm 
100 1 |a Pricci Alessio  |u Department of Mechanics, Mathematics and Management (DMMM), Polytechnic University of Bari, Via E. Orabona 4, 70125 Bari, Italy; alessio.pricci@poliba.it 
245 1 |a Physics-Based Predictive Modeling of Gravity-Induced Sagging in Support-Free Pellet Additive Manufacturing 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The fabrication of support-free structures in pellet additive manufacturing (PAM) is severely limited by gravity-induced sagging, a phenomenon lacking predictive, physics-based models. This study introduces and validates a numerical model for the thermofluid dynamics of sagging, aiming to correlate process parameters with filament deflection. A predictive finite element (FE) model incorporating temperature-dependent non-Newtonian material properties and heat transfer dynamics has been developed. This was validated via a systematic experimental study on a desktop-scale PAM 3D printer investigating nozzle temperature, printhead speed, screw speed and fan cooling, using polylactic acid (PLA) as a printing material. Findings show that process parameter optimization can reduce bridge deflection by 64.91%, with active fan cooling being the most dominant factor due to accelerated solidification. Increased printhead speed reduced sagging, whereas higher screw speeds and extrusion temperature showed the opposite effect. The FE model accurately replicated these results and further revealed that sagging ceases once the filament cools below its minimum flow temperature (approximately 150–160 °C for PLA). This validated model provides a robust foundation for tuning process parameters, unlocking effective support-free 3D printing in PAM. 
653 |a Finite element method 
653 |a Printers (data processing) 
653 |a Gravity 
653 |a Extrusion rate 
653 |a Viscosity 
653 |a Investigations 
653 |a Temperature dependence 
653 |a Material properties 
653 |a Rheology 
653 |a Prediction models 
653 |a Numerical models 
653 |a Pellets 
653 |a Process controls 
653 |a Solidification 
653 |a 3-D printers 
653 |a Polylactic acid 
653 |a Three dimensional printing 
653 |a Manufacturing 
653 |a Minimum flow 
653 |a Heat conductivity 
653 |a Additive manufacturing 
653 |a Process parameters 
653 |a Cooling 
653 |a Deflection 
773 0 |t Polymers  |g vol. 17, no. 21 (2025), p. 2858-2877 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3271052206/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3271052206/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3271052206/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch