The value of cough sound monitoring via an audio-enabled smartwatch for OSA screening in COPD patients: a cross-sectional exploratory study

Guardado en:
Bibliografiske detaljer
Udgivet i:Frontiers in Medicine vol. 12 (Oct 2025), p. 1650014-1650024
Hovedforfatter: Zhang, Cheng
Andre forfattere: Zhang, Chunbo, Jin, Zhe, Yu, Kunyao, Wei, Shanshan, Zhang, Meng, Zhou, Jin, Liao, Jiping, Wang, Guangfa
Udgivet:
Frontiers Media SA
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3271053181
003 UK-CbPIL
022 |a 2296-858X 
024 7 |a 10.3389/fmed.2025.1650014  |2 doi 
035 |a 3271053181 
045 2 |b d20251001  |b d20251031 
100 1 |a Zhang, Cheng 
245 1 |a The value of cough sound monitoring via an audio-enabled smartwatch for OSA screening in COPD patients: a cross-sectional exploratory study 
260 |b Frontiers Media SA  |c Oct 2025 
513 |a Journal Article 
520 3 |a ObjectiveThe purpose of this study is to explore the value of cough sounds and forced exhalation sounds monitored by smartwatches with audio collection capabilities for screening obstructive sleep apnea (OSA) in patients with chronic obstructive pulmonary disease (COPD).MethodsStable COPD patients were recruited from an outpatient clinic. All participants completed questionnaires and underwent pulmonary function testing and overnight polysomnography (PSG). A novel smartwatch capable of collecting audio signals was worn to continuously monitor peripheral oxygen saturation (SpO₂), heart rate (HR), heart rate variability (HRV), and respiratory rate (RR). Additionally, voluntary cough and forced exhalation sounds were recorded twice daily. Audio data were denoised, segmented, and analyzed using time- and frequency-domain features. Correlations between audio features and OSA diagnosis/severity were assessed and a predicting model were developed based on these data.ResultsAmong the 29 participants with stable COPD, 26 underwent PSG, and 17 were diagnosed with comorbid OSA. Multiple cough and forced exhalation subfeatures correlated significantly with OSA diagnosis and apnea and hypopnea index (AHI). Cough sounds showed the highest correlation with OSA diagnosis ( r = −0.6629, p < 0.001). A logistic regression model using a cough sound subfeature (the median of MFCC_35) achieved 92% accuracy with a Cohen’s kappa value of 0.8276 in predicting OSA in COPD patients.ConclusionThis study demonstrates a strong association between cough sounds and OSA risk in COPD patients. Cough sounds recorded by smartwatches may serve as a valuable tool for screening OSA in COPD patients, contributing to the management of patients with overlap syndrome. 
610 4 |a Peking University 
653 |a Physiology 
653 |a Smartwatches 
653 |a Mortality 
653 |a Sleep apnea 
653 |a Normal distribution 
653 |a Signal processing 
653 |a Chronic illnesses 
653 |a Wearable computers 
653 |a Dyspnea 
653 |a Correlation analysis 
653 |a Chronic obstructive pulmonary disease 
653 |a Variance analysis 
653 |a Sound 
653 |a Heart rate 
700 1 |a Zhang, Chunbo 
700 1 |a Jin, Zhe 
700 1 |a Yu, Kunyao 
700 1 |a Wei, Shanshan 
700 1 |a Zhang, Meng 
700 1 |a Zhou, Jin 
700 1 |a Liao, Jiping 
700 1 |a Wang, Guangfa 
773 0 |t Frontiers in Medicine  |g vol. 12 (Oct 2025), p. 1650014-1650024 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3271053181/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3271053181/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3271053181/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch