CrowdMagMap 2.0: Crowdsourced Magnetic Mapping for Multi-Floor Underground Parking Lot Navigation

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:IEEE Transactions on Intelligent Transportation Systems vol. 26, no. 12 (2025), p. 18708-18721
Kaituhi matua: Kuang, Jian
Ētahi atu kaituhi: Wang, Yan, Ding, Longyang, Zhou, Baoding, Xu, Liping, Cao, Li, He, Lanqin, Wen, Yunhui, Niu, Xiaoji
I whakaputaina:
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Ngā marau:
Urunga tuihono:Citation/Abstract
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

MARC

LEADER 00000nab a2200000uu 4500
001 3271174736
003 UK-CbPIL
022 |a 1524-9050 
022 |a 1558-0016 
024 7 |a 10.1109/TITS.2025.3597273  |2 doi 
035 |a 3271174736 
045 2 |b d20250101  |b d20251231 
084 |a 121629  |2 nlm 
100 1 |a Kuang, Jian  |u GNSS Research Center and the Hubei Technology Innovation Center for Spatiotemporal Information and Positioning Navigation, Wuhan University, Wuhan, Hubei, China 
245 1 |a CrowdMagMap 2.0: Crowdsourced Magnetic Mapping for Multi-Floor Underground Parking Lot Navigation 
260 |b The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  |c 2025 
513 |a Journal Article 
520 3 |a Location-based services (LBS) have become an integral part of daily life and work for the general public. However, achieving widespread and accurate positioning in typical indoor environments remains a significant challenge, particularly in multi-floor indoor parking lots where radio frequency signals like WiFi are often unavailable. Indoor magnetic matching presents a viable solution, but it requires reducing mapping costs through the use of crowdsourced data. To tackle this issue, we propose an innovative method for constructing magnetic maps using crowdsourced vehicle data. Our approach introduces a multi-user joint vehicle dead reckoning technique based on graph optimization, which provides consistent directional estimates of crowdsourced vehicle trajectories. Subsequently, we establish associations between different vehicle trajectories using multi-attribute features of the magnetic field. Building on this foundation, we propose a global trajectory optimization with inequality and equality constraints to achieve precise estimation of crowdsourced vehicle trajectories. Testing with simulated data from two three-floor underground parking lots demonstrates that the proposed method, utilizing only on-board smartphone sensor data, achieves plane and elevation errors of less than 2.75 meters (95%) and 0.59 meters (95%), respectively. Additionally, the magnetic matching positioning error based on crowdsourced magnetic sequence maps is less than 2.29 meters (95%). 
653 |a Mapping 
653 |a Dead reckoning 
653 |a Location based services 
653 |a Matching 
653 |a Trajectory optimization 
653 |a Maps 
653 |a Indoor environments 
653 |a Crowdsourcing 
653 |a Radio signals 
653 |a Parking facilities 
700 1 |a Wang, Yan  |u GNSS Research Center and the Hubei Technology Innovation Center for Spatiotemporal Information and Positioning Navigation, Wuhan University, Wuhan, Hubei, China 
700 1 |a Ding, Longyang  |u GNSS Research Center and the Hubei Technology Innovation Center for Spatiotemporal Information and Positioning Navigation, Wuhan University, Wuhan, Hubei, China 
700 1 |a Zhou, Baoding  |u State Key Laboratory of Road Engineering in Extreme Environment and Institute of Urban Smart Transportation and Safety Maintenance, Shenzhen University, Shenzhen, Guangdong, China 
700 1 |a Xu, Liping  |u Shanghai Transsion Information Technology Ltd., Shanghai, China 
700 1 |a Cao, Li  |u Shanghai Transsion Information Technology Ltd., Shanghai, China 
700 1 |a He, Lanqin  |u Shanghai Transsion Information Technology Ltd., Shanghai, China 
700 1 |a Wen, Yunhui  |u Shanghai Transsion Information Technology Ltd., Shanghai, China 
700 1 |a Niu, Xiaoji  |u GNSS Research Center and the Hubei Technology Innovation Center for Spatiotemporal Information and Positioning Navigation, Wuhan University, Wuhan, Hubei, China 
773 0 |t IEEE Transactions on Intelligent Transportation Systems  |g vol. 26, no. 12 (2025), p. 18708-18721 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3271174736/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch