RTM Surrogate Modeling in Optical Remote Sensing: A Review of Emulation for Vegetation and Atmosphere Applications

Na minha lista:
Detalhes bibliográficos
Publicado no:Remote Sensing vol. 17, no. 21 (2025), p. 3618-3647
Autor principal: Verrelst Jochem
Outros Autores: Morata Miguel, García-Soria, José Luis, Sun, Yilin, Qi Jianbo, Rivera-Caicedo, Juan Pablo
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3271543961
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17213618  |2 doi 
035 |a 3271543961 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Verrelst Jochem  |u Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain; miguel.morata@uv.es (M.M.); jose.l.garcia@uv.es (J.L.G.-S.) 
245 1 |a RTM Surrogate Modeling in Optical Remote Sensing: A Review of Emulation for Vegetation and Atmosphere Applications 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a <sec sec-type="highlights"> What are the main findings? <list list-type="bullet"> <list-item> </list-item>Emulation via machine learning regression algorithms (MLRAs) accurately reproduces vegetation and atmospheric RTMs while accelerating computations by <inline-formula>102</inline-formula>–<inline-formula>106</inline-formula>. <list-item> Dimensionality reduction (e.g., PCA, autoencoders) with scalable MLRAs (GPR, NN, DLNN) optimizes the accuracy–efficiency trade-off for hyperspectral and coupled models. </list-item> What is the implication of the main finding? <list list-type="bullet"> <list-item> </list-item>Emulation enables fast global sensitivity analysis, scene generation, and large-scale inversion applications. <list-item> Anticipated advances: physics-informed/explainable emulation, reliable uncertainty layers, and emulation of water and soil RTMs. </list-item> Radiative transfer models (RTMs) are foundational to optical remote sensing for simulating vegetation and atmospheric properties. However, their significant computational cost, especially for 3D RTMs and large-scale applications, severely limits their utility. Emulation, or surrogate modeling, has emerged as a highly effective strategy, accurately and efficiently replicating RTM outputs. This review comprehensively surveys recent developments in emulating vegetation and atmospheric RTMs. We discuss the methodological underpinnings, including suitable machine learning regression algorithms (MLRAs), effective training sampling strategies (e.g., Latin Hypercube Sampling, active learning), and spectral dimensionality reduction (DR) methods (e.g., PCA, autoencoders). Emulators commonly achieve <inline-formula>102−106×</inline-formula> per-evaluation acceleration, but accuracy–efficiency trade-offs remain inherently context-dependent, governed by the MLRA design and the coverage/quality of training data. DR consistently shifts this trade-off toward lower cost at comparable accuracy, positioning latent-space training as a pragmatic choice for hyperspectral applications. We synthesize key emulation applications such as global sensitivity analysis, synthetic scene generation, scene-to-scene translation (e.g., multispectral-to-hyperspectral), and retrieval of geophysical variables using remote sensing data. The paper concludes by outlining persistent challenges in generalizability, interpretability, and scalability, while also proposing future research avenues: investigating advanced deep learning algorithms (e.g., physics-informed and explainable architectures), developing multimodal/multitemporal frameworks, and establishing community benchmarks, tools and libraries. Emulation ultimately empowers remote sensing workflows with unparalleled scalability, transforming previously unmanageable tasks into viable solutions for operational Earth observation applications. 
653 |a Vegetation 
653 |a Benchmarks 
653 |a Principles 
653 |a Accuracy 
653 |a Radiative transfer 
653 |a Sensitivity analysis 
653 |a Physics 
653 |a Modelling 
653 |a Tradeoffs 
653 |a Aerosols 
653 |a Remote sensing 
653 |a Scene generation 
653 |a Machine learning 
653 |a Hypercubes 
653 |a Sampling 
653 |a Time series 
653 |a Realism 
653 |a Deep learning 
653 |a Radiation 
653 |a Learning algorithms 
653 |a Optical properties 
653 |a Simulation 
653 |a Atmosphere 
653 |a Computing costs 
653 |a Algorithms 
653 |a Chlorophyll 
653 |a Latin hypercube sampling 
700 1 |a Morata Miguel  |u Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain; miguel.morata@uv.es (M.M.); jose.l.garcia@uv.es (J.L.G.-S.) 
700 1 |a García-Soria, José Luis  |u Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain; miguel.morata@uv.es (M.M.); jose.l.garcia@uv.es (J.L.G.-S.) 
700 1 |a Sun, Yilin  |u State Forestry and Grassland Administration Key Laboratory of Forest Resources and Environmental Management, Beijing Forestry University, Beijing 100083, China; ssyylin_sun@bjfu.edu.cn 
700 1 |a Qi Jianbo  |u State Key Laboratory of Remote Sensing and Digital Earth, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; jianboqi@bnu.edu.cn 
700 1 |a Rivera-Caicedo, Juan Pablo  |u Secretary of Research and Graduate Studies, CONACYT-UAN, Tepic 63155, Mexico; jprivera@conacyt.mx 
773 0 |t Remote Sensing  |g vol. 17, no. 21 (2025), p. 3618-3647 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3271543961/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3271543961/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3271543961/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch