Automated Detection of Embankment Piping and Leakage Hazards Using UAV Visible Light Imagery: A Frequency-Enhanced Deep Learning Approach for Flood Risk Prevention

Guardat en:
Dades bibliogràfiques
Publicat a:Remote Sensing vol. 17, no. 21 (2025), p. 3602-3638
Autor principal: Liu, Jian
Altres autors: Wang, Zhonggen, Li, Renzhi, Zhao Ruxin, Zhang Qianlin
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3271543963
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17213602  |2 doi 
035 |a 3271543963 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Liu, Jian  |u National Institute of Natural Hazards, Ministry of Emergency Management of the People’s Republic of China, Beijing 100085, China; liujian23@mails.ucas.ac.cn (J.L.); zhonggenwang@ninhm.ac.cn (Z.W.); ruxinzhao@ninhm.ac.cn (R.Z.); qianlinzhang@ninhm.ac.cn (Q.Z.) 
245 1 |a Automated Detection of Embankment Piping and Leakage Hazards Using UAV Visible Light Imagery: A Frequency-Enhanced Deep Learning Approach for Flood Risk Prevention 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a <sec sec-type="highlights"> What are the main findings? <list list-type="bullet"> <list-item> </list-item>EmbFreq-Net achieves 77.68% mAP@0.5 for embankment hazard detection, outperforming the baseline by 4.19 percentage points while reducing computational cost by 27.0% and parameters by 21.7%. <list-item> Frequency-domain dynamic convolution enhances detection sensitivity to subtle piping and leakage textural features by 23.4% compared to conventional spatial convolution methods. </list-item> What is the implication of the main findings? <list list-type="bullet"> <list-item> </list-item>Edge computing deployment enables real-time monitoring and early warning systems, facilitating rapid on-site verification by personnel and supporting timely emergency decision-making for embankment safety management. <list-item> The 23.4% improvement in detecting subtle piping and leakage textural features provides a cost-effective and more accurate embankment detection algorithm, promoting widespread adoption and better supporting emergency decision-making processes. </list-item> Embankment piping and leakage are primary causes of flood control infrastructure failure, accounting for more than 90% of embankment failures worldwide and posing significant threats to public safety and economic stability. Current manual inspection methods are labor-intensive, hazardous, and inadequate for emergency flood season monitoring, while existing automated approaches using thermal infrared imaging face limitations in cost, weather dependency, and deployment flexibility. This study addresses the critical scientific challenge of developing reliable, cost-effective automated detection systems for embankment safety monitoring using Unmanned Aerial Vehicle (UAV)-based visible light imagery. The fundamental problem lies in extracting subtle textural signatures of piping and leakage from complex embankment surface patterns under varying environmental conditions. To solve this challenge, we propose the Embankment-Frequency Network (EmbFreq-Net), a frequency-enhanced deep learning framework that leverages frequency-domain analysis to amplify hazard-related features while suppressing environmental noise. The architecture integrates dynamic frequency-domain feature extraction, multi-scale attention mechanisms, and lightweight design principles to achieve real-time detection capabilities suitable for emergency deployment and edge computing applications. This approach transforms traditional post-processing workflows into an efficient real-time edge computing solution, significantly improving computational efficiency and enabling immediate on-site hazard assessment. Comprehensive evaluations on a specialized embankment hazard dataset demonstrate that EmbFreq-Net achieves 77.68% mAP@0.5, representing a 4.19 percentage point improvement over state-of-the-art methods, while reducing computational requirements by 27.0% (4.6 vs. 6.3 Giga Floating-Point Operations (GFLOPs)) and model parameters by 21.7% (2.02M vs. 2.58M). These results demonstrate the method’s potential for transforming embankment safety monitoring from reactive manual inspection to proactive automated surveillance, thereby contributing to enhanced flood risk management and infrastructure resilience. 
653 |a Feature extraction 
653 |a Warning systems 
653 |a Datasets 
653 |a Early warning systems 
653 |a Infrastructure 
653 |a Convolution 
653 |a Flood control 
653 |a Edge computing 
653 |a Computer applications 
653 |a Machine learning 
653 |a Efficiency 
653 |a Background noise 
653 |a Remote sensing 
653 |a Fourier transforms 
653 |a Decision making 
653 |a Leakage 
653 |a Computational efficiency 
653 |a Emergency communications systems 
653 |a Risk management 
653 |a Algorithms 
653 |a Embankments 
653 |a Accuracy 
653 |a Flood management 
653 |a Deep learning 
653 |a Inspection 
653 |a Parameter sensitivity 
653 |a Safety 
653 |a Environmental conditions 
653 |a Environmental risk 
653 |a Public safety 
653 |a Monitoring 
653 |a Floating point arithmetic 
653 |a Floods 
653 |a Cost effectiveness 
653 |a Infrared imaging 
653 |a Safety management 
653 |a Unmanned aerial vehicles 
653 |a Frequency domain analysis 
653 |a Computing costs 
653 |a Design 
653 |a Light 
700 1 |a Wang, Zhonggen  |u National Institute of Natural Hazards, Ministry of Emergency Management of the People’s Republic of China, Beijing 100085, China; liujian23@mails.ucas.ac.cn (J.L.); zhonggenwang@ninhm.ac.cn (Z.W.); ruxinzhao@ninhm.ac.cn (R.Z.); qianlinzhang@ninhm.ac.cn (Q.Z.) 
700 1 |a Li, Renzhi  |u National Institute of Natural Hazards, Ministry of Emergency Management of the People’s Republic of China, Beijing 100085, China; liujian23@mails.ucas.ac.cn (J.L.); zhonggenwang@ninhm.ac.cn (Z.W.); ruxinzhao@ninhm.ac.cn (R.Z.); qianlinzhang@ninhm.ac.cn (Q.Z.) 
700 1 |a Zhao Ruxin  |u National Institute of Natural Hazards, Ministry of Emergency Management of the People’s Republic of China, Beijing 100085, China; liujian23@mails.ucas.ac.cn (J.L.); zhonggenwang@ninhm.ac.cn (Z.W.); ruxinzhao@ninhm.ac.cn (R.Z.); qianlinzhang@ninhm.ac.cn (Q.Z.) 
700 1 |a Zhang Qianlin  |u National Institute of Natural Hazards, Ministry of Emergency Management of the People’s Republic of China, Beijing 100085, China; liujian23@mails.ucas.ac.cn (J.L.); zhonggenwang@ninhm.ac.cn (Z.W.); ruxinzhao@ninhm.ac.cn (R.Z.); qianlinzhang@ninhm.ac.cn (Q.Z.) 
773 0 |t Remote Sensing  |g vol. 17, no. 21 (2025), p. 3602-3638 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3271543963/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3271543963/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3271543963/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch