Construction of Remote Sensing Early Warning Knowledge Graph Based on Multi-Source Disaster Data

Bewaard in:
Bibliografische gegevens
Gepubliceerd in:Remote Sensing vol. 17, no. 21 (2025), p. 3594-3612
Hoofdauteur: Chen Miaoying
Andere auteurs: Cao Xin
Gepubliceerd in:
MDPI AG
Onderwerpen:
Online toegang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!

MARC

LEADER 00000nab a2200000uu 4500
001 3271543987
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17213594  |2 doi 
035 |a 3271543987 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Chen Miaoying  |u State Key Laboratory of Remote Sensing and Digital Earth, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; 202221051091@mail.bnu.edu.cn 
245 1 |a Construction of Remote Sensing Early Warning Knowledge Graph Based on Multi-Source Disaster Data 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a <sec sec-type="highlights"> What are the main findings? <list list-type="bullet"> <list-item> Constructed a multi-source disaster knowledge graph integrating remote sensing and statistical data for unified visual query. </list-item> <list-item> Proposed a quantitative remote sensing method to assess disaster intensity, impact, and trends, enabling cross-domain knowledge conversion. </list-item> What are the implications of the main findings? <list list-type="bullet"> <list-item> The “data silo” gap between remote sensing monitoring and sector-specific disaster management is bridged. </list-item> <list-item> A rule-based decision-support tool for scientific and intelligent disaster early warning is provided. </list-item> Natural disasters occur continuously across the globe, posing severe threats to human life and property. Remote sensing technology has provided powerful technical means for large-scale and rapid disaster monitoring. However, the deep integration of remote sensing observations with sector-specific disaster statistical data to construct a knowledge system that supports early warning decision-making remains a significant challenge. This study aims to address the bottleneck in the “data-information-knowledge-service” transformation process by constructing an integrated natural disaster early warning knowledge graph that incorporates multi-source heterogeneous data. We first designed an ontological schema layer comprising six core elements: disaster type, event, anomaly information, impact information, warning information, and decision information. Subsequently, multi-source data were integrated from various sources, including the Emergency Events Database (EM-DAT), sector-specific websites, encyclopedic pages, and remote sensing imagery such as Gaofen-2 (GF-2) and Sentinel-1. A Bidirectional Encoder Representations from Transformers with a Conditional Random Field layer (BERT-CRF) model was employed for entity and relation extraction, and the knowledge was stored and visualized using the Neo4j graph database. The core innovation of this research lies in proposing a quantitative methodology for assessing disaster intensity, impact, and trends based on remote sensing evaluation, establishing a knowledge conversion mechanism with sector-specific warning levels, and designing explicit warning issuance rules. A case study on a specific wildfire event (2017-0417-PRT, Coimbra, Portugal) demonstrates that the knowledge graph not only achieves organic integration and visual querying of multi-source disaster knowledge but also facilitates warning decision-making driven by remote sensing assessment indicators. For this event, quantitative analysis of Gaofen-2 imagery yielded intensity, impact, and trend levels of 4, 3, and 3, respectively, which, when applied to our warning rule (intensity ≥ 1 or impact ≥ 1 or trend ≥ 3), automatically triggered an early warning, thereby validating the rule’s practicality. A preliminary performance evaluation on 50 historical wildfire events demonstrated promising results, with an F1-score of 74.3% and an average query response time of 128 ms, confirming the system’s practical responsiveness and detection capability. In conclusion, this study offers a novel and operational technical pathway for the deep interdisciplinary integration of remote sensing and disaster science, effectively bridging the gap between data silos and actionable warning knowledge. 
610 4 |a United Nations--UN 
653 |a Statistics 
653 |a Databases 
653 |a Performance evaluation 
653 |a Disaster recovery 
653 |a Conditional random fields 
653 |a Ontology 
653 |a Early warning systems 
653 |a Remote sensing 
653 |a Disaster management 
653 |a Remote monitoring 
653 |a Unmanned aerial vehicles 
653 |a Emergency preparedness 
653 |a Knowledge representation 
653 |a Quantitative analysis 
653 |a Risk assessment 
653 |a Wildfires 
653 |a Decision support systems 
653 |a Natural disasters 
653 |a Trends 
653 |a Decision making 
653 |a Knowledge 
653 |a Emergency communications systems 
653 |a Earthquakes 
653 |a Information processing 
653 |a Forest & brush fires 
653 |a Satellites 
653 |a Imagery 
653 |a Integration 
653 |a Semantics 
700 1 |a Cao Xin  |u State Key Laboratory of Remote Sensing and Digital Earth, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; 202221051091@mail.bnu.edu.cn 
773 0 |t Remote Sensing  |g vol. 17, no. 21 (2025), p. 3594-3612 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3271543987/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3271543987/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3271543987/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch