Land-Cover Controls on the Accuracy of PS-InSAR-Derived Concrete Track Settlement Measurements

Salvato in:
Dettagli Bibliografici
Pubblicato in:Remote Sensing vol. 17, no. 21 (2025), p. 3537-3555
Autore principale: Byung-kyu, Kim
Altri autori: Kim, Joonyoung, Park Jeongjun, Lee, Ilwha, Yoo Mintaek
Pubblicazione:
MDPI AG
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3271544859
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17213537  |2 doi 
035 |a 3271544859 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Byung-kyu, Kim  |u Track & Civil Infrastructure Division, Korea Railroad Research Institute, 176, Cheoldobangmulgwan-ro, Uiwang-si 16105, Republic of Korea; bkkim86@krri.re.kr (B.-k.K.); iwlee@krri.re.kr (I.L.) 
245 1 |a Land-Cover Controls on the Accuracy of PS-InSAR-Derived Concrete Track Settlement Measurements 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a <sec sec-type="highlights"> What are the main findings? <list list-type="bullet"> <list-item> </list-item>PS-InSAR accurately captured millimeter-scale settlements along the Honam High-Speed Railway embankments, showing strong agreement with leveling survey results (MAE = 1.7–4.2 mm). <list-item> Quantitative regression analysis demonstrated that land-cover composition—particularly the balance between vegetation and high-reflectivity surfaces—explains a significant portion of the variability in PS-InSAR accuracy and persistent scatterer density. </list-item> What is the implication of the main finding? <list list-type="bullet"> <list-item> </list-item>The study transforms the well-known limitation of vegetation-induced decorrelation into a predictive framework by statistically modeling its influence on PS-InSAR performance. <list-item> The proposed regression-based approach provides practical guidance for selecting monitoring zones and determining when complementary ground-based surveys are required, thereby improving the reliability of satellite-based settlement monitoring strategies for railway infrastructure management. </list-item> Accurate monitoring of settlement in high-speed railway embankments is critical for operational safety and long-term serviceability. This study investigates the applicability of Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) for quantifying millimeter-scale deformations and emphasizes how surrounding environmental factors influence measurement accuracy. Using 29 TerraSAR-X images acquired between 2016 and 2018, PS-InSAR-derived settlements were compared with precise leveling survey data across twelve representative embankment sections of the Honam High-Speed Railway in South Korea. Temporal and spatial discrepancies between the two datasets were harmonized through preprocessing, allowing robust accuracy assessment using mean absolute error (MAE) and standard deviation (SD). Results demonstrate that PS-InSAR reliably captures settlement trends, with MAE ranging from 1.7 to 4.2 mm across different scenes. However, significant variability in accuracy was observed depending on local land-cover composition. Correlation analysis revealed that vegetation-dominated areas, such as agricultural and forest land, reduce persistent scatterer density and increase measurement variability, whereas high-reflectivity surfaces, including transportation facilities and buildings, enhance measurement stability and precision. These findings confirm that environmental conditions are decisive factors in determining the performance of PS-InSAR. The study highlights the necessity of integrating site-specific land-cover information when designing and interpreting satellite-based monitoring strategies for railway infrastructure management. 
651 4 |a South Korea 
653 |a Vegetation 
653 |a Reflectance 
653 |a Accuracy 
653 |a Leveling 
653 |a Embankments 
653 |a Concrete 
653 |a Correlation analysis 
653 |a Infrastructure 
653 |a High speed rail 
653 |a Environmental conditions 
653 |a Regression analysis 
653 |a Railroads 
653 |a Monitoring 
653 |a Land cover 
653 |a Density 
653 |a Influence 
653 |a Interferometric synthetic aperture radar 
653 |a Surveys 
653 |a Image acquisition 
653 |a Environmental factors 
653 |a Bridges 
653 |a Composition 
700 1 |a Kim, Joonyoung  |u Department of Artificial Intelligence, Hannam University, 70, Hannam-ro, Daedeok-gu, Daejeon 34430, Republic of Korea; jykim91@hnu.kr 
700 1 |a Park Jeongjun  |u Railroad AI Convergence Research Department, Korea Railroad Research Institute, 176 Railroad Museum Road, Uiwang-si 16105, Republic of Korea; jjpark@krri.re.kr 
700 1 |a Lee, Ilwha  |u Track &amp;amp; Civil Infrastructure Division, Korea Railroad Research Institute, 176, Cheoldobangmulgwan-ro, Uiwang-si 16105, Republic of Korea; bkkim86@krri.re.kr (B.-k.K.); iwlee@krri.re.kr (I.L.) 
700 1 |a Yoo Mintaek  |u Department of Civil &amp;amp; Environmental Engineering, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea 
773 0 |t Remote Sensing  |g vol. 17, no. 21 (2025), p. 3537-3555 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3271544859/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3271544859/fulltextwithgraphics/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3271544859/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch