Performance Assessment of IMERG V07 Versus V06 for Precipitation Estimation in the Parnaíba River Basin

Guardado en:
Detalles Bibliográficos
Publicado en:Remote Sensing vol. 17, no. 21 (2025), p. 3613-3636
Autor principal: Batista, Flávia Ferreira
Otros Autores: Rodrigues, Daniele Tôrres, Santos e Silva Cláudio Moises, Andrade Lara de Melo Barbosa, Mutti, Pedro Rodrigues, Potes Miguel, Costa, Maria João
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3271544873
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17213613  |2 doi 
035 |a 3271544873 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Batista, Flávia Ferreira  |u Federal Institute of Espírito Santo (IFES), Presidente Kennedy 29350-000, ES, Brazil 
245 1 |a Performance Assessment of IMERG V07 Versus V06 for Precipitation Estimation in the Parnaíba River Basin 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a <sec sec-type="highlights"> What are the main findings? <list list-type="bullet"> <list-item> </list-item>IMERG V07 reduced systematic errors compared to V06, with lower bias and random errors across most of the basin, while high Rbias values (>70%) persisted in the northeastern highlands due to orographic–convective interactions. Detection capacity also improved, with false alarms reduced by ~5% and KGE increasing by ~11%. <list-item> Cluster-based analysis revealed that V07 better represented seasonal precipitation variability, correcting overestimation in wet periods and underestimation in semi-arid regions. </list-item> What is the implication of the main finding? <list list-type="bullet"> <list-item> </list-item>These improvements enhance the reliability of IMERG V07 for hydrological and climate applications in tropical basins with strong seasonal variability. <list-item> Persistent errors in mountainous and transitional areas highlight the need for regionalized bias corrections tailored to local climatic and topographic conditions. </list-item> Accurate satellite-based precipitation estimates are crucial for climate studies and water resource management, particularly in regions with sparse meteorological station coverage. This study evaluates the improvements of the Integrated Multi-satellite Retrievals for GPM (IMERG) Final Run version 07 (V07) relative to the previous version (V06). The evaluation employed gridded data from the Brazilian Daily Weather Gridded Data (BR-DWGD) product and ground observations from 58 rain gauges distributed across the Parnaíba River Basin in Northeast Brazil. The analysis comprised three main stages: (i) an intercomparison between BR-DWGD gridded data and rain gauge records using correlation, bias, and Root Mean Square Error (RMSE) metrics; (ii) a comparative assessment of the IMERG Final V06 and V07 products, evaluated with statistical metrics (correlation, bias, and RMSE) and complemented by performance indicators including the Kling-Gupta Efficiency (KGE), Probability of Detection (POD), and False Alarm Ratio (FAR); and (iii) the application of cluster analysis to identify homogeneous regions and characterize seasonal rainfall variations across the basin. The results show that the IMERG Final V07 product provides notable improvements, with lower bias, reduced RMSE, and greater accuracy in representing the spatial distribution of precipitation, particularly in the central and southern regions of the basin, which feature complex topography. IMERG V07 also demonstrated higher consistency, with reduced random errors and improved seasonal performance, reflected in higher POD and lower FAR values during the rainy season. The cluster analysis identified four homogeneous regions, within which V07 more effectively captured seasonal rainfall patterns influenced by systems such as the Intertropical Convergence Zone (ITCZ) and Amazonian moisture advection. These findings highlight the potential of the IMERG Final V07 product to enhance precipitation estimation across diverse climatic and topographic settings, supporting applications in hydrological modeling and extreme-event monitoring. 
651 4 |a Brazil 
653 |a River basins 
653 |a Bias 
653 |a Gauges 
653 |a Intertropical convergence zone 
653 |a Estimates 
653 |a Topography 
653 |a Seasons 
653 |a Rivers 
653 |a Seasonal variations 
653 |a Precipitation 
653 |a Climate change 
653 |a Resource management 
653 |a Systematic errors 
653 |a Spatial distribution 
653 |a Water resources management 
653 |a False alarms 
653 |a Root-mean-square errors 
653 |a Rain gauges 
653 |a Regions 
653 |a Emergency communications systems 
653 |a Rainy season 
653 |a Arid regions 
653 |a Semiarid zones 
653 |a Performance assessment 
653 |a Arid zones 
653 |a Floods 
653 |a Rainfall 
653 |a Calibration 
653 |a Statistical analysis 
653 |a Climate studies 
653 |a Random errors 
653 |a Weather stations 
653 |a Climate 
653 |a Cluster analysis 
653 |a Semi arid areas 
653 |a Rain 
700 1 |a Rodrigues, Daniele Tôrres  |u Department of Atmospheric and Climate Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; mspdany@ufpi.edu.br (D.T.R.); claudio.silva@ufrn.br (C.M.S.e.S.); lara.andrade@ufrn.br (L.d.M.B.A.); pedro.mutti@ufrn.br (P.R.M.) 
700 1 |a Santos e Silva Cláudio Moises  |u Department of Atmospheric and Climate Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; mspdany@ufpi.edu.br (D.T.R.); claudio.silva@ufrn.br (C.M.S.e.S.); lara.andrade@ufrn.br (L.d.M.B.A.); pedro.mutti@ufrn.br (P.R.M.) 
700 1 |a Andrade Lara de Melo Barbosa  |u Department of Atmospheric and Climate Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; mspdany@ufpi.edu.br (D.T.R.); claudio.silva@ufrn.br (C.M.S.e.S.); lara.andrade@ufrn.br (L.d.M.B.A.); pedro.mutti@ufrn.br (P.R.M.) 
700 1 |a Mutti, Pedro Rodrigues  |u Department of Atmospheric and Climate Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; mspdany@ufpi.edu.br (D.T.R.); claudio.silva@ufrn.br (C.M.S.e.S.); lara.andrade@ufrn.br (L.d.M.B.A.); pedro.mutti@ufrn.br (P.R.M.) 
700 1 |a Potes Miguel  |u Center for Sci-Tech Research in Earth System and Energy—CREATE, Department of Physics, Universidade de Évora, 7000-671 Évora, Portugal; mpotes@uevora.pt (M.P.); mjcosta@uevora.pt (M.J.C.) 
700 1 |a Costa, Maria João  |u Center for Sci-Tech Research in Earth System and Energy—CREATE, Department of Physics, Universidade de Évora, 7000-671 Évora, Portugal; mpotes@uevora.pt (M.P.); mjcosta@uevora.pt (M.J.C.) 
773 0 |t Remote Sensing  |g vol. 17, no. 21 (2025), p. 3613-3636 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3271544873/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3271544873/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3271544873/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch