Computational Modelling of a Prestressed Tensegrity Core in a Sandwich Panel

Guardado en:
Detalles Bibliográficos
Publicado en:Materials vol. 18, no. 21 (2025), p. 4880-4895
Autor principal: Pełczyński Jan
Otros Autores: Martyniuk-Sienkiewicz Kamila
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3271547997
003 UK-CbPIL
022 |a 1996-1944 
024 7 |a 10.3390/ma18214880  |2 doi 
035 |a 3271547997 
045 2 |b d20250101  |b d20251231 
084 |a 231532  |2 nlm 
100 1 |a Pełczyński Jan 
245 1 |a Computational Modelling of a Prestressed Tensegrity Core in a Sandwich Panel 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Tensegrity structures, by definition composed of compressed members suspended in a network of tensile cables, are characterised by a high strength-to-weight ratio and the ability to undergo reversible deformations. Their application as cores of sandwich panels represents an innovative approach to lightweight design, enabling the regulation of mechanical properties while reducing material consumption. This study presents a finite element modelling procedure that combines analytical determination of prestress using singular value decomposition with implementation in the ABAQUS™ 2019 software. Geometry generation and prestress definitions were automated with Python 3 scripts, while algebraic analysis of individual modules was performed in Wolfram Mathematica. Two models were investigated: M1, composed of four identical modules, and M2, composed of four modules arranged in two mirrored pairs. Model M1 exhibited a linear elastic response with a constant global stiffness of 13.9 kN/mm, stable regardless of the prestress level. Model M2 showed nonlinear hardening behaviour with variable stiffness ranging from 0.135 to 1.1 kN/mm and required prestress to ensure static stability. Eigenvalue analysis confirmed the full stability of M1 and the increase in stability of M2 upon the introduction of prestress. The proposed method enables precise control of prestress distribution, which is crucial for the stability and stiffness of tensegrity structures. The M2 configuration, due to its sensitivity to prestress and variable stiffness, is particularly promising as an adaptive sandwich panel core in morphing structures, adaptive building systems, and deployable constructions. 
653 |a Load 
653 |a Finite element method 
653 |a Software 
653 |a Stiffness 
653 |a Civil engineering 
653 |a Mechanical properties 
653 |a Elastic properties 
653 |a Decomposition 
653 |a Algebra 
653 |a Modules 
653 |a Boundary conditions 
653 |a Composite materials 
653 |a Smart structures 
653 |a Sandwich panels 
653 |a Eigenvalues 
653 |a Tensegrity structures 
653 |a Static stability 
653 |a Adaptive systems 
653 |a Singular value decomposition 
653 |a Cables 
653 |a Morphing 
653 |a Prestressing 
653 |a Strength to weight ratio 
653 |a Design 
653 |a Mathematical models 
653 |a Deformation 
653 |a Geometry 
700 1 |a Martyniuk-Sienkiewicz Kamila 
773 0 |t Materials  |g vol. 18, no. 21 (2025), p. 4880-4895 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3271547997/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3271547997/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3271547997/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch