Pre-Processing Ensemble Modeling Based on Faster Covariate Selection Calibration for Near-Infrared Spectroscopy

Guardado en:
Bibliografiske detaljer
Udgivet i:Applied Sciences vol. 15, no. 21 (2025), p. 11325-11340
Hovedforfatter: Wu, Yonghong
Andre forfattere: Zhou Yukun, Chen, Xiaojing, Xie Zhonghao, Shujat, Ali, Huang Guangzao, Yuan Leiming, Shi, Wen, Wang, Xin, Zhang Lechao
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3271549874
003 UK-CbPIL
022 |a 2076-3417 
024 7 |a 10.3390/app152111325  |2 doi 
035 |a 3271549874 
045 2 |b d20250101  |b d20251231 
084 |a 231338  |2 nlm 
100 1 |a Wu, Yonghong  |u Department of Power Supply and Consumption Technology, Beijing Railway Electrification College, Beijing 102202, China 
245 1 |a Pre-Processing Ensemble Modeling Based on Faster Covariate Selection Calibration for Near-Infrared Spectroscopy 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Ensemble techniques are crucial for preprocessing near-infrared (NIR) data, yet effectively integrating information from multiple preprocessing methods remains challenging. While multi-block approaches have been introduced to optimize preprocessing selection, they face issues such as block order dependency, slow optimization, and limited interpretability. This study proposes PFCOVSC—a fast, order-independent, and interpretable ensemble preprocessing strategy integrating multi-block fusion and variable selection. The method combines diverse preprocessed data into a unified matrix and employs the efficient fCovsel technique to select informative variables and construct an ensemble model. Evaluated against SPORT and PROSAC on three public datasets, PFCOVSC substantially reduced prediction root mean squared error (RMSE) on wheat and meat datasets by 17%, 13% and 49%, 20%, respectively, while performing comparably on tablet data. The method also demonstrated advantages in computational speed and model interpretability, offering a promising new direction for preprocessing ensemble strategies. 
653 |a Variables 
653 |a Feature selection 
653 |a Methods 
653 |a Datasets 
653 |a Algorithms 
653 |a Spectrum analysis 
653 |a Calibration 
700 1 |a Zhou Yukun  |u College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325000, China 
700 1 |a Chen, Xiaojing  |u College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325000, China 
700 1 |a Xie Zhonghao  |u College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325000, China 
700 1 |a Shujat, Ali  |u College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325000, China 
700 1 |a Huang Guangzao  |u College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325000, China 
700 1 |a Yuan Leiming  |u College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325000, China 
700 1 |a Shi, Wen  |u College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325000, China 
700 1 |a Wang, Xin  |u School of Robot Engineering, Wenzhou University of Technology, Wenzhou 325000, China 
700 1 |a Zhang Lechao  |u School of Robot Engineering, Wenzhou University of Technology, Wenzhou 325000, China 
773 0 |t Applied Sciences  |g vol. 15, no. 21 (2025), p. 11325-11340 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3271549874/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3271549874/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3271549874/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch