MARC

LEADER 00000nab a2200000uu 4500
001 3271742144
003 UK-CbPIL
022 |a 0343-2521 
022 |a 1572-9893 
024 7 |a 10.1007/s10708-025-11534-y  |2 doi 
035 |a 3271742144 
045 2 |b d20251101  |b d20251231 
084 |a 53322  |2 nlm 
100 1 |a Yang, Yanli  |u Kaifeng University, Kaifeng, China (GRID:grid.495253.c) (ISNI:0000 0004 6487 7549) 
245 1 |a Spatial distribution patterns of urban economic activities: a graph convolutional network approach 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a With the acceleration of urbanization, the spatial distribution patterns of urban economic activities are becoming increasingly complex. How to scientifically and effectively analyze and optimize these distribution patterns has become one of the key issues in urban planning and economic development. Based on spatial data analysis and Graph Convolutional Networks (GCNs), this paper investigates the distribution patterns and influencing factors of urban economic activities. By collecting multi-dimensional spatial data and employing GIS, spatial statistics, and GCN-based modeling, we reveal the spatial aggregation patterns and diffusion mechanisms of different economic activities in urban areas. The results show that urban economic activities show obvious spatial agglomeration effect, especially in the core area and near transportation hubs, where economic activities are more concentrated. Further analysis shows that factors such as land use type, traffic network density and population density have significant influence on the spatial distribution of economic activities. In the specific data analysis, 10 city sample data were used, and was quantitatively evaluated by spatial autocorrelation analysis and regression model. The results show that the agglomeration effect of economic activities is closely related to the scale of cities and the perfection of transportation facilities, and big cities are more likely to form high-density economic areas than small cities. The research in this paper provides important theoretical basis and data support for urban planners and policy makers, which is helpful to optimize the spatial layout activities and improve the efficiency of resource allocation. Finally, the article puts forward several policy suggestions to promote the rationalization of urban economic space, promote the sustainable development of cities. 
653 |a Population density 
653 |a Agglomeration 
653 |a Urbanization 
653 |a Small cities 
653 |a Urban planning 
653 |a Urban areas 
653 |a Resource allocation 
653 |a Cities 
653 |a Transportation networks 
653 |a Transportation 
653 |a Land use 
653 |a Policy making 
653 |a Economic activity 
653 |a Spatial distribution 
653 |a Spatial data 
653 |a Layout 
653 |a Sustainable development 
653 |a Economic development 
653 |a Spatial analysis 
653 |a Data analysis 
653 |a Regression analysis 
653 |a Trends 
653 |a Regression models 
653 |a Data processing 
653 |a Statistical analysis 
653 |a Networks 
653 |a Research methodology 
653 |a Distribution 
653 |a Geographic information systems 
653 |a Distribution patterns 
653 |a Statistics 
653 |a Resource efficiency 
653 |a Aggregation 
653 |a Rationalization 
653 |a Artificial neural networks 
653 |a Transport buildings, stations and terminals 
653 |a Economics 
653 |a Data 
653 |a Geographical information systems 
653 |a Economic planning 
653 |a Economic factors 
653 |a Economic activities 
653 |a Autocorrelation 
653 |a Area planning & development 
653 |a Perfectionism 
653 |a Data collection 
653 |a Urban policy 
653 |a Population distribution 
653 |a Economic 
700 1 |a Yan, Li  |u Chongqing Youth Vocational & Technical College, Chongqing, China (GRID:grid.495253.c) 
773 0 |t GeoJournal  |g vol. 90, no. 6 (Dec 2025), p. 288 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3271742144/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch