Research on Heavy Rainfall Inversion Algorithm Based on CD-Pix2Pix Model

Gardado en:
Detalles Bibliográficos
Publicado en:Journal of Tropical Meteorology vol. 31, no. 5 (Oct 2025), p. 556-565
Autor Principal: Zhang, Yu-Hao
Outros autores: Lu, Zhen-Yu, Zhang, Xiao-Wen, Lu, Bing-Jian
Publicado:
Guangzhou Institute of Tropical & Marine Meteorology
Materias:
Acceso en liña:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3272221500
003 UK-CbPIL
022 |a 1006-8775 
024 7 |a 10.3724/j.1006-8775.2025.012  |2 doi 
035 |a 3272221500 
045 2 |b d20251001  |b d20251031 
084 |a 123710  |2 nlm 
100 1 |a Zhang, Yu-Hao  |u Nanjing University of Information Science and Technology, Nanjing 210044 China 
245 1 |a Research on Heavy Rainfall Inversion Algorithm Based on CD-Pix2Pix Model 
260 |b Guangzhou Institute of Tropical & Marine Meteorology  |c Oct 2025 
513 |a Journal Article 
520 3 |a With the intensification of climate change, frequent short-duration heavy rainfall events exert significant impacts on human society and natural environment. Traditional rainfall recognition methods show limitations, including poor timeliness, inadequate handling of imbalanced data, and low accuracy when dealing with these events. This paper proposes a method based on CD-Pix2Pix model for inverting short-duration heavy rainfall events, aiming to improve the accuracy of inversion. The method integrates the attention mechanism network CSM-Net and the Dropblock module with a Bayesian optimized loss function to improve imbalanced data processing and enhance overall performance. This study utilizes multisource heterogeneous data, including radar composite reflectivity, FY-4B satellite data, and ground automatic station rainfall observations data, with China Meteorological Administration Land Data Assimilation System (CLDAS) data as the target labels fror the inversion task. Experimental results show that the enhanced method outperforms conventional rainfall inversion methods across multiple evaluation metrics, particularly demonstrating superior performance in Threat Score (TS, 0.495), Probability of Detection (POD, 0.857), and False Alarm Ratio (FAR, 0.143). 
651 4 |a China 
653 |a Climate change 
653 |a Satellite data 
653 |a Accuracy 
653 |a Data processing 
653 |a Deep learning 
653 |a Agricultural production 
653 |a Rainfall 
653 |a Rainfall-climatic change relationships 
653 |a Data assimilation 
653 |a Data analysis 
653 |a Heavy rainfall 
653 |a Machine learning 
653 |a Meteorological satellites 
653 |a Remote sensing 
653 |a Bayesian analysis 
653 |a Precipitation 
653 |a False alarms 
653 |a Reflectance 
653 |a Climate models 
653 |a Data collection 
653 |a Natural environment 
653 |a Radar data 
653 |a Probability theory 
653 |a Rain 
653 |a Environmental 
700 1 |a Lu, Zhen-Yu  |u Nanjing University of Information Science and Technology, Nanjing 210044 China 
700 1 |a Zhang, Xiao-Wen  |u National Meteorological Center, Beijing 100081 China 
700 1 |a Lu, Bing-Jian  |u Nanjing University of Information Science and Technology, Nanjing 210044 China 
773 0 |t Journal of Tropical Meteorology  |g vol. 31, no. 5 (Oct 2025), p. 556-565 
786 0 |d ProQuest  |t East & South Asia Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3272221500/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3272221500/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3272221500/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch