Research on Heavy Rainfall Inversion Algorithm Based on CD-Pix2Pix Model
Gardado en:
| Publicado en: | Journal of Tropical Meteorology vol. 31, no. 5 (Oct 2025), p. 556-565 |
|---|---|
| Autor Principal: | |
| Outros autores: | , , |
| Publicado: |
Guangzhou Institute of Tropical & Marine Meteorology
|
| Materias: | |
| Acceso en liña: | Citation/Abstract Full Text Full Text - PDF |
| Etiquetas: |
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3272221500 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 1006-8775 | ||
| 024 | 7 | |a 10.3724/j.1006-8775.2025.012 |2 doi | |
| 035 | |a 3272221500 | ||
| 045 | 2 | |b d20251001 |b d20251031 | |
| 084 | |a 123710 |2 nlm | ||
| 100 | 1 | |a Zhang, Yu-Hao |u Nanjing University of Information Science and Technology, Nanjing 210044 China | |
| 245 | 1 | |a Research on Heavy Rainfall Inversion Algorithm Based on CD-Pix2Pix Model | |
| 260 | |b Guangzhou Institute of Tropical & Marine Meteorology |c Oct 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a With the intensification of climate change, frequent short-duration heavy rainfall events exert significant impacts on human society and natural environment. Traditional rainfall recognition methods show limitations, including poor timeliness, inadequate handling of imbalanced data, and low accuracy when dealing with these events. This paper proposes a method based on CD-Pix2Pix model for inverting short-duration heavy rainfall events, aiming to improve the accuracy of inversion. The method integrates the attention mechanism network CSM-Net and the Dropblock module with a Bayesian optimized loss function to improve imbalanced data processing and enhance overall performance. This study utilizes multisource heterogeneous data, including radar composite reflectivity, FY-4B satellite data, and ground automatic station rainfall observations data, with China Meteorological Administration Land Data Assimilation System (CLDAS) data as the target labels fror the inversion task. Experimental results show that the enhanced method outperforms conventional rainfall inversion methods across multiple evaluation metrics, particularly demonstrating superior performance in Threat Score (TS, 0.495), Probability of Detection (POD, 0.857), and False Alarm Ratio (FAR, 0.143). | |
| 651 | 4 | |a China | |
| 653 | |a Climate change | ||
| 653 | |a Satellite data | ||
| 653 | |a Accuracy | ||
| 653 | |a Data processing | ||
| 653 | |a Deep learning | ||
| 653 | |a Agricultural production | ||
| 653 | |a Rainfall | ||
| 653 | |a Rainfall-climatic change relationships | ||
| 653 | |a Data assimilation | ||
| 653 | |a Data analysis | ||
| 653 | |a Heavy rainfall | ||
| 653 | |a Machine learning | ||
| 653 | |a Meteorological satellites | ||
| 653 | |a Remote sensing | ||
| 653 | |a Bayesian analysis | ||
| 653 | |a Precipitation | ||
| 653 | |a False alarms | ||
| 653 | |a Reflectance | ||
| 653 | |a Climate models | ||
| 653 | |a Data collection | ||
| 653 | |a Natural environment | ||
| 653 | |a Radar data | ||
| 653 | |a Probability theory | ||
| 653 | |a Rain | ||
| 653 | |a Environmental | ||
| 700 | 1 | |a Lu, Zhen-Yu |u Nanjing University of Information Science and Technology, Nanjing 210044 China | |
| 700 | 1 | |a Zhang, Xiao-Wen |u National Meteorological Center, Beijing 100081 China | |
| 700 | 1 | |a Lu, Bing-Jian |u Nanjing University of Information Science and Technology, Nanjing 210044 China | |
| 773 | 0 | |t Journal of Tropical Meteorology |g vol. 31, no. 5 (Oct 2025), p. 556-565 | |
| 786 | 0 | |d ProQuest |t East & South Asia Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3272221500/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text |u https://www.proquest.com/docview/3272221500/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3272221500/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch |