Impact of image preprocessing methods on MRI radiomics feature variability and classification performance in Parkinson’s disease motor subtype analysis

Tallennettuna:
Bibliografiset tiedot
Julkaisussa:Scientific Reports (Nature Publisher Group) vol. 15, no. 1 (2025), p. 40030-40044
Päätekijä: Panahi, Mehdi
Muut tekijät: Hosseini, Mahboube Sadat, Aghamiri, Seyyed Mahmoud Reza
Julkaistu:
Nature Publishing Group
Aiheet:
Linkit:Citation/Abstract
Full Text
Full Text - PDF
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!

MARC

LEADER 00000nab a2200000uu 4500
001 3272254689
003 UK-CbPIL
022 |a 2045-2322 
024 7 |a 10.1038/s41598-025-23702-8  |2 doi 
035 |a 3272254689 
045 2 |b d20250101  |b d20251231 
084 |a 274855  |2 nlm 
100 1 |a Panahi, Mehdi  |u Department of Computer Engineering, Payame Noor University Erbil Branch, Erbil, Iraq 
245 1 |a Impact of image preprocessing methods on MRI radiomics feature variability and classification performance in Parkinson’s disease motor subtype analysis 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a To evaluate the impact of various magnetic resonance imaging (MRI) preprocessing methods on radiomic feature reproducibility and classification performance in differentiating Parkinson’s disease (PD) motor subtypes. We analyzed 210 T1-weighted MRI scans from the Parkinson’s Progression Markers Initiative (PPMI) database, including 140 PD patients (70 tremor-dominant (TD), 70 postural instability/gait difficulty (PIGD)) and 70 healthy controls. Five preprocessing pipelines were applied, and 22,560 radiomic features were extracted from 16 brain regions. Feature reproducibility was assessed using intraclass correlation coefficients (ICC). Support Vector Machine (SVM) classifiers were developed using all features and only reproducible features to compare classification performance across preprocessing methods. Wavelet-based features showed the highest reproducibility, with 37% demonstrating excellent ICC values (≥ 0.90). Excluding non-reproducible features generally improved classification performance. Specific results include: (1) The Smallest Univalue Segment Assimilating Nucleus (SUSAN) denoising + Bias field correction + Z-score Normalization (S + B + ZN) method achieved the highest Area Under the Receiver Operating Characteristics (ROC) Curve (AUC) (0.88) before feature exclusion. (2) After excluding non-reproducible features, the Bias field correction + Z-score Normalization (B + ZN) method showed the most significant improvement, with AUC increasing from 0.49 to 0.64. (3) Texture-based features, particularly from Gray Level Co-occurrence Matrix (GLCM) and Gray Level Size Zone Matrix (GLSZM), were among the most reproducible across preprocessing methods. MRI preprocessing methods significantly impact radiomic feature reproducibility and subsequent classification performance in PD motor subtype analysis. Wavelet-based and texture features demonstrated high reproducibility, while excluding non-reproducible features generally improved classification accuracy. These findings underscore the importance of careful preprocessing method selection and feature reproducibility assessment in developing robust radiomics-based classification models for PD subtypes. 
653 |a Radiomics 
653 |a Machine learning 
653 |a Parkinson's disease 
653 |a Magnetic resonance imaging 
653 |a Investigations 
653 |a Scanners 
653 |a Movement disorders 
653 |a Disease 
653 |a Brain research 
653 |a Classification 
653 |a Tremor 
653 |a Standard scores 
653 |a Neurodegenerative diseases 
653 |a Neuroimaging 
653 |a Motor task performance 
653 |a Reproducibility 
653 |a Correlation coefficient 
653 |a Bias 
653 |a Environmental 
700 1 |a Hosseini, Mahboube Sadat  |u Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran (ROR: https://ror.org/0091vmj44) (GRID: grid.412502.0) (ISNI: 0000 0001 0686 4748) 
700 1 |a Aghamiri, Seyyed Mahmoud Reza  |u Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran (ROR: https://ror.org/0091vmj44) (GRID: grid.412502.0) (ISNI: 0000 0001 0686 4748) 
773 0 |t Scientific Reports (Nature Publisher Group)  |g vol. 15, no. 1 (2025), p. 40030-40044 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3272254689/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3272254689/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3272254689/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch