ESA-YOLO: An efficient scale-aware traffic sign detection algorithm based on YOLOv11 under adverse weather conditions

Sábháilte in:
Sonraí bibleagrafaíochta
Foilsithe in:PLoS One vol. 20, no. 11 (Nov 2025), p. e0336863
Príomhchruthaitheoir: Li, ChenHao
Rannpháirtithe: Liu, ShuXian, Peng, ZiNuo
Foilsithe / Cruthaithe:
Public Library of Science
Ábhair:
Rochtain ar líne:Citation/Abstract
Full Text
Full Text - PDF
Clibeanna: Cuir clib leis
Níl clibeanna ann, Bí ar an gcéad duine le clib a chur leis an taifead seo!

MARC

LEADER 00000nab a2200000uu 4500
001 3272257889
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0336863  |2 doi 
035 |a 3272257889 
045 2 |b d20251101  |b d20251130 
084 |a 174835  |2 nlm 
100 1 |a Li, ChenHao 
245 1 |a ESA-YOLO: An efficient scale-aware traffic sign detection algorithm based on YOLOv11 under adverse weather conditions 
260 |b Public Library of Science  |c Nov 2025 
513 |a Journal Article 
520 3 |a Traffic sign detection is a critical component of autonomous driving and advanced driver assistance systems, yet challenges persist in achieving high accuracy while maintaining efficiency, particularly for multi-scale and small objects in complex scenes. This paper proposes an improved YOLOv11-based traffic sign detection algorithm that tackles above challenges through three key innovations: (1) A Dense Multi-path Feature Pyramid Network (DMFPN) that boosts multi-scale feature fusion by enabling comprehensive bidirectional interaction between high-level semantic and low-level spatial information, augmented by a dynamic weighted fusion mechanism. (2) A Context-Aware Gating Block (CAGB) that efficiently integrates local and global contextual information through lightweight token and channel mixer, enhancing the small-object detection ability without excessive computational overhead. (3) An Adaptive Scene Perception Head (ASPH) that synergistically combines multi-scale feature extraction with attention mechanisms to improve robustness in adverse weather condition. Extensive experiments on the TT100K and CCTSDB2021 datasets demonstrate the model’s superior performance. On the TT100K dataset, our model outperforms the state-of-the-art YOLOv11n model, achieving improvements of 3.8% in mAP@50 and 3.9% in mAP@50-95 while maintaining comparable computational complexity and reducing parameters by 20%. Similar gains are observed on the CCTSDB2021 dataset, with enhancements of 2.3% in mAP@50 and 1.8% in mAP@50-95. Furthermore, experimental results also demonstrate that our proposed model exhibits superior performance in small object detection and robustness in complex environments compared to mainstream competitors. 
653 |a Feature extraction 
653 |a Traffic 
653 |a Accuracy 
653 |a Traffic signs 
653 |a Deep learning 
653 |a Algorithms 
653 |a Weather 
653 |a Weather conditions 
653 |a Computer applications 
653 |a Critical components 
653 |a Robustness 
653 |a Advanced driver assistance systems 
653 |a Machine learning 
653 |a Datasets 
653 |a Spatial data 
653 |a Computer vision 
653 |a Sensors 
653 |a Traffic control 
653 |a Channel gating 
653 |a Telematics 
653 |a Complexity 
653 |a Multisensor fusion 
653 |a Semantics 
653 |a Environmental 
700 1 |a Liu, ShuXian 
700 1 |a Peng, ZiNuo 
773 0 |t PLoS One  |g vol. 20, no. 11 (Nov 2025), p. e0336863 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3272257889/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3272257889/fulltext/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3272257889/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch