Advanced Classification of Poxvirus-Based Skin Diseases Using Deep Learning Techniques

Сохранить в:
Библиографические подробности
Опубликовано в::Traitement du Signal vol. 42, no. 5 (Oct 2025), p. 2777-2787
Главный автор: Kaan Arik
Другие авторы: Ağdaş, Mehmet T, Korkmaz, Adem, Koşunalp, Selahattin, Iliev, Teodor
Опубликовано:
International Information and Engineering Technology Association (IIETA)
Предметы:
Online-ссылка:Citation/Abstract
Full Text - PDF
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!

MARC

LEADER 00000nab a2200000uu 4500
001 3272277487
003 UK-CbPIL
022 |a 0765-0019 
022 |a 1958-5608 
024 7 |a 10.18280/ts.420528  |2 doi 
035 |a 3272277487 
045 2 |b d20251001  |b d20251031 
100 1 |a Kaan Arik 
245 1 |a Advanced Classification of Poxvirus-Based Skin Diseases Using Deep Learning Techniques 
260 |b International Information and Engineering Technology Association (IIETA)  |c Oct 2025 
513 |a Journal Article 
520 3 |a Viral infections, especially those of the poxvirus family, present significant diagnostic challenges due to their similar clinical symptoms. This study proposes an innovative deep learning-based approach to classify six categories of poxvirus-related skin diseases: chickenpox, cowpox, healthy, measles, monkeypox, and smallpox. A dataset of 9,120 augmented images was used to train, validate, and test three advanced deep-learning models—YOLOv8, YOLOv5, and ResNet32. Among the models, YOLOv8 demonstrated superior performance, achieving an accuracy of 99.80%, precision of 99.28%, and recall of 99.14%, significantly outperforming YOLOv5 and ResNet32. The results underscore the potential of YOLOv8 in medical image analysis, providing a robust and efficient tool for the early detection and accurate classification of viral skin diseases. Comparisons with related studies highlight the effectiveness of the proposed approach, making it a state-of-the-art solution for improving diagnostic accuracy in healthcare. Future work will focus on extending the dataset and evaluating the model's applicability in real-time clinical environments. 
651 4 |a Africa 
653 |a Infectious diseases 
653 |a COVID-19 vaccines 
653 |a Deep learning 
653 |a Classification 
653 |a Mortality 
653 |a Medical imaging 
653 |a Skin diseases 
653 |a Lesions 
653 |a Smallpox 
653 |a Fever 
653 |a Disease prevention 
653 |a Immunization 
653 |a Accuracy 
653 |a Datasets 
653 |a Image analysis 
653 |a Artificial intelligence 
653 |a Mpox 
653 |a Pandemics 
653 |a Epidemics 
653 |a Measles 
653 |a Public health 
653 |a Viruses 
653 |a Object recognition 
653 |a Viral infections 
653 |a Real time 
653 |a Disease transmission 
700 1 |a Ağdaş, Mehmet T 
700 1 |a Korkmaz, Adem 
700 1 |a Koşunalp, Selahattin 
700 1 |a Iliev, Teodor 
773 0 |t Traitement du Signal  |g vol. 42, no. 5 (Oct 2025), p. 2777-2787 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3272277487/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3272277487/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch