Exploring the Potential of AI in Network Slicing for 5G Networks: An Optimisation Framework

Guardado en:
Detalles Bibliográficos
Publicado en:IET Communications vol. 19, no. 1 (Jan/Dec 2025)
Autor principal: Boufakhreddine, Zeina
Otros Autores: Nohra, Alain, Haidar, Gaby Abou, Achkar, Roger, Owayjan, Michel
Publicado:
John Wiley & Sons, Inc.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3272339331
003 UK-CbPIL
022 |a 1751-8628 
022 |a 1751-8636 
024 7 |a 10.1049/cmu2.70116  |2 doi 
035 |a 3272339331 
045 2 |b d20250101  |b d20251231 
084 |a 186333  |2 nlm 
100 1 |a Boufakhreddine, Zeina  |u Computer and Communications Engineering, American University of Science and Technology, Beirut, Lebanon 
245 1 |a Exploring the Potential of AI in Network Slicing for 5G Networks: An Optimisation Framework 
260 |b John Wiley & Sons, Inc.  |c Jan/Dec 2025 
513 |a Journal Article 
520 3 |a ABSTRACT The integration of artificial intelligence (AI) into 5G network slicing is essential for overcoming limitations in autonomous management and precise resource allocation in complex network environments. Traditional methods struggle with dynamic adaptability, often requiring manual intervention and lacking scalability. This research leverages AI models, specifically logistic regression and long short‐term memory (LSTM) to automate and optimise real time slice allocation. During testing across various values of the regularisation parameter (alpha), the models achieved classification accuracy up to 95% at alpha = 0.1 and maintained over 65% at higher values, demonstrating robustness. We also implement dynamic programming of segment routing over IPv6 (SRv6) Identifiers, enabling accurate differentiation of up to 40,000 enhanced mobile broadband (eMBB) slices, as well as ultra‐reliable low‐latency communication (URLLC) and massive machine type communications (mMTC) types. An adaptive application programming interface (API) based framework further adjusts SRv6 traffic engineering (SRv6 TE) policies in real time, ensuring uninterrupted service. High receiver operating characteristic‐area under the curve (ROC AUC) scores, reaching 0.99, validate the model's strong classification performance. This approach advances automated 5G slicing by enhancing responsiveness, scalability and service quality. 
653 |a Wireless networks 
653 |a Regularization 
653 |a Dynamic programming 
653 |a Classification 
653 |a Artificial intelligence 
653 |a Network slicing 
653 |a 5G mobile communication 
653 |a Traffic engineering 
653 |a Optimization 
653 |a Resource allocation 
653 |a Network latency 
653 |a Mobile computing 
653 |a Application programming interface 
653 |a Broadband 
653 |a Architecture 
653 |a Quality of service 
653 |a Automation 
653 |a Real time 
700 1 |a Nohra, Alain  |u Computer and Communications Engineering, American University of Science and Technology, Beirut, Lebanon 
700 1 |a Haidar, Gaby Abou  |u Computer and Communications Engineering, American University of Science and Technology, Beirut, Lebanon 
700 1 |a Achkar, Roger  |u Computer and Communications Engineering, American University of Science and Technology, Beirut, Lebanon 
700 1 |a Owayjan, Michel  |u Computer and Communications Engineering, American University of Science and Technology, Beirut, Lebanon 
773 0 |t IET Communications  |g vol. 19, no. 1 (Jan/Dec 2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3272339331/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3272339331/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3272339331/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch