Integrating Dynamic Soil Classification with Pattern Recognition-Based Anomaly Detection for Precision Agriculture

Salvato in:
Dettagli Bibliografici
Pubblicato in:i-Manager's Journal on Information Technology vol. 14, no. 3 (Sep 2025)
Autore principale: Beulah, D
Altri autori: P. Vamsi Krishna Raja, Haritha, D
Pubblicazione:
iManager Publications
Soggetti:
Accesso online:Citation/Abstract
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3272572140
003 UK-CbPIL
022 |a 2277-5110 
022 |a 2277-5250 
024 7 |a 10.26634/jit.14.3.22208  |2 doi 
035 |a 3272572140 
045 2 |b d20250901  |b d20250930 
084 |a 215733  |2 nlm 
100 1 |a Beulah, D 
245 1 |a Integrating Dynamic Soil Classification with Pattern Recognition-Based Anomaly Detection for Precision Agriculture 
260 |b iManager Publications  |c Sep 2025 
513 |a Journal Article 
520 3 |a This current investigation is intended to create an overarching state-of-the-art system that integrates unsupervised soil clustering with pattern recognition-based anomaly detection for the intention of revolutionizing precision farming. Most conventional techniques of classifying soil do not involve dynamic variation in the properties of soil and are unable to detect anomalous conditions that affect agricultural productivity. By incorporating the application of adaptive incremental clustering algorithms and pattern-based analysis techniques, this research introduces a better solution that can classify soil dynamically according to various attributes in addition to outlier detection from defined patterns. The new architecture continues prior research in auto-incremental clustering for dynamic soil classification and industrial anomaly detection by adding a two-phase framework: a high-level sophisticated unsupervised learning algorithm for dynamic soil classification that learns to accommodate new soil samples and environmental conditions, and a high- level sophisticated pattern recognition system that detects anomalous soil conditions through temporal changes in soil parameters. This merging is anticipated to enhance classification precision by 15-20% over existing approaches and decrease false positive anomaly detection by over 30%, thus enabling farmers to make more accurate choices in precision agriculture based on more trustworthy data. 
653 |a Outliers (statistics) 
653 |a Pattern analysis 
653 |a Clustering 
653 |a Soil properties 
653 |a Pattern recognition systems 
653 |a Unsupervised learning 
653 |a Classification 
653 |a Soil conditions 
653 |a Anomalies 
653 |a Agriculture 
653 |a Machine learning 
653 |a Soil classification 
653 |a Pattern recognition 
653 |a Adaptive algorithms 
700 1 |a P. Vamsi Krishna Raja 
700 1 |a Haritha, D 
773 0 |t i-Manager's Journal on Information Technology  |g vol. 14, no. 3 (Sep 2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3272572140/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3272572140/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch