Transferable foundation models for geometric tasks on point cloud representations: geometric neural operators

Guardado en:
Detalles Bibliográficos
Publicado en:Machine Learning : Science and Technology vol. 6, no. 4 (Dec 2025), p. 045045
Autor principal: Quackenbush, B
Otros Autores: Atzberger, P J
Publicado:
IOP Publishing
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3272720416
003 UK-CbPIL
022 |a 2632-2153 
024 7 |a 10.1088/2632-2153/ae1bf8  |2 doi 
035 |a 3272720416 
045 2 |b d20251201  |b d20251231 
100 1 |a Quackenbush, B 
245 1 |a Transferable foundation models for geometric tasks on point cloud representations: geometric neural operators 
260 |b IOP Publishing  |c Dec 2025 
513 |a Journal Article 
520 3 |a We introduce methods for obtaining pretrained geometric neural operators (GNPs) that can serve as basal foundation models for use in obtaining geometric features. These can be used within data processing pipelines for machine learning tasks and numerical methods. We show how our GNPs can be trained to learn robust latent representations for the differential geometry of point-clouds to provide estimates of metric, curvature, and other shape-related features. We demonstrate how our pre-trained GNPs can be used (i) to estimate the geometric properties of surfaces of arbitrary shape and topologies with robustness in the presence of noise, (ii) to approximate solutions of geometric partial differential equations on manifolds, and (iii) to solve equations for shape deformations such as curvature driven flows. We release codes and weights for using GNPs in the package <ext-link ext-link-type="uri" xlink3ahref="https://github.com/atzberg/geo_neural_op">geo_neural_op</ext-link>. This allows for incorporating our pre-trained GNPs as components for reuse within existing and new data processing pipelines. The GNPs also can be used as part of numerical solvers involving geometry or as part of methods for performing inference and other geometric tasks. 
653 |a Data processing 
653 |a Partial differential equations 
653 |a Curvature 
653 |a Machine learning 
653 |a Differential geometry 
653 |a Operators (mathematics) 
653 |a Numerical methods 
653 |a Cognitive tasks 
653 |a Representations 
653 |a Topology 
700 1 |a Atzberger, P J 
773 0 |t Machine Learning : Science and Technology  |g vol. 6, no. 4 (Dec 2025), p. 045045 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3272720416/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3272720416/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch