Quantifying Early-Stage Lung Adenocarcinoma Progression with a Radiomic Trajectory
Guardado en:
| Publicado en: | NPJ Digital Medicine vol. 8, no. 1 (Dec 2025), p. 664-677 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , , , , , , , , , , , , , , , , |
| Publicado: |
Nature Publishing Group
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | Determining tumor progression status is critical for early-stage lung adenocarcinoma (esLUAD) diagnosis and treatment, yet histopathology-based grading often overlooks heterogeneity within grades. We propose RadioTrace, a deep contrastive learning framework integrating radiomic and pathological information to learn a radiomic trajectory for quantifying esLUAD progression. Across four multi-institutional cohorts, RadioTrace well predicted tumor phenotypes including spread through air spaces (STAS) and lymph node metastasis (LNM). Survival analyses demonstrated it as an independent prognostic factor (log-rank test p < 0.004 across all cohorts). Within the same pathological grade, it revealed significant survival heterogeneity (p < 0.02 across all cohorts), underscoring the limitations of current grading criteria. Genomic and transcriptomic analyses confirmed associations with progression-related molecular features. Longitudinal analysis of patients with multiple CT follow-ups further showed consistency with continuous progression. These findings demonstrate that RadioTrace enables quantitative, interpretable assessment of esLUAD progression, providing insights beyond histopathology and assisting clinical decision-making. |
|---|---|
| ISSN: | 2398-6352 |
| DOI: | 10.1038/s41746-025-02031-0 |
| Fuente: | Health & Medical Collection |