Advancing Brain-Computer Interface Closed-Loop Systems for Neurorehabilitation: Systematic Review of AI and Machine Learning Innovations in Biomedical Engineering

Uloženo v:
Podrobná bibliografie
Vydáno v:JMIR Biomedical Engineering vol. 10 (2025), p. e72218-e72237
Hlavní autor: Williams, Christopher
Další autoři: Fahim Islam Anik, Hasan, Md Mehedi, Rodriguez-Cardenas, Juan, Chowdhury, Anushka, Tian, Shirley, He, Selena, Sakib, Nazmus
Vydáno:
JMIR Publications
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3272972426
003 UK-CbPIL
022 |a 2561-3278 
024 7 |a 10.2196/72218  |2 doi 
035 |a 3272972426 
045 2 |b d20250101  |b d20251231 
100 1 |a Williams, Christopher 
245 1 |a Advancing Brain-Computer Interface Closed-Loop Systems for Neurorehabilitation: Systematic Review of AI and Machine Learning Innovations in Biomedical Engineering 
260 |b JMIR Publications  |c 2025 
513 |a Journal Article 
520 3 |a Background:Brain-computer interface (BCI) closed-loop systems have emerged as a promising tool in health care and wellness monitoring, particularly in neurorehabilitation and cognitive assessment. With the increasing burden of neurological disorders, including Alzheimer disease and related dementias (AD/ADRD), there is a critical need for real-time, noninvasive monitoring technologies. BCIs enable direct communication between the brain and external devices, leveraging artificial intelligence (AI) and machine learning (ML) to interpret neural signals. However, challenges such as signal noise, data processing limitations, and privacy concerns hinder widespread implementation.Objective:The primary objective of this study is to investigate the role of ML and AI in enhancing BCI closed-loop systems for health care applications. Specifically, we aim to analyze the methods and parameters used in these systems, assess the effectiveness of different AI and ML techniques, identify key challenges in their development and implementation, and propose a framework for using BCIs in the longitudinal monitoring of AD/ADRD patients. By addressing these aspects, this study seeks to provide a comprehensive overview of the potential and limitations of AI-driven BCIs in neurological health care.Methods:A systematic literature review was conducted following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, focusing on studies published between 2019 and 2024. We sourced research articles from PubMed, IEEE, ACM, and Scopus using predefined keywords related to BCIs, AI, and AD/ADRD. A total of 220 papers were initially identified, with 18 meeting the final inclusion criteria. Data extraction followed a structured matrix approach, categorizing studies based on methods, ML algorithms, limitations, and proposed solutions. A comparative analysis was performed to synthesize key findings and trends in AI-enhanced BCI systems for neurorehabilitation and cognitive monitoring.Results:The review identified several ML techniques, including transfer learning (TL), support vector machines (SVMs), and convolutional neural networks (CNNs), that enhance BCI closed-loop performance. These methods improve signal classification, feature extraction, and real-time adaptability, enabling accurate monitoring of cognitive states. However, challenges such as long calibration sessions, computational costs, data security risks, and variability in neural signals were also highlighted. To address these issues, emerging solutions such as improved sensor technology, efficient calibration protocols, and advanced AI-driven decoding models are being explored. In addition, BCIs show potential for real-time alert systems that support caregivers in managing AD/ADRD patients.Conclusions:BCI closed-loop systems, when integrated with AI and ML, offer significant advancements in neurological health care, particularly in AD/ADRD monitoring and neurorehabilitation. Despite their potential, challenges related to data accuracy, security, and scalability must be addressed for widespread clinical adoption. Future research should focus on refining AI models, improving real-time data processing, and enhancing user accessibility. With continued advancements, AI-powered BCIs can revolutionize personalized health care by providing continuous, adaptive monitoring and intervention for patients with neurological disorders. 
651 4 |a United States--US 
653 |a Neurological diseases 
653 |a Alzheimer's disease 
653 |a Communication 
653 |a People with disabilities 
653 |a Brain research 
653 |a Artificial neural networks 
653 |a Telemedicine 
653 |a Closed loops 
653 |a Machine learning 
653 |a Computer applications 
653 |a Electroencephalography 
653 |a Transfer learning 
653 |a Health care 
653 |a Signal processing 
653 |a Human-computer interface 
653 |a Closed loop systems 
653 |a Rehabilitation 
653 |a Calibration 
653 |a Algorithms 
653 |a Patients 
653 |a Real time 
653 |a Feedback control 
653 |a Interfaces 
653 |a Brain 
653 |a Comparative analysis 
653 |a Artificial intelligence 
653 |a Data processing 
653 |a Security 
653 |a Decoding 
653 |a Disease 
653 |a Biochips 
653 |a Structured matrices 
653 |a Implants 
653 |a Neurodegenerative diseases 
653 |a Learning algorithms 
653 |a Clinical outcomes 
653 |a Literature reviews 
653 |a Medical innovations 
653 |a Neurology 
653 |a Support vector machines 
653 |a Dementia 
653 |a Signal classification 
653 |a Biomedical engineering 
653 |a System effectiveness 
653 |a Neural networks 
700 1 |a Fahim Islam Anik 
700 1 |a Hasan, Md Mehedi 
700 1 |a Rodriguez-Cardenas, Juan 
700 1 |a Chowdhury, Anushka 
700 1 |a Tian, Shirley 
700 1 |a He, Selena 
700 1 |a Sakib, Nazmus 
773 0 |t JMIR Biomedical Engineering  |g vol. 10 (2025), p. e72218-e72237 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3272972426/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3272972426/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3272972426/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch