Research on an intelligent monitoring and diagnosis system for fatigue damage in coke drums based on data-driven approaches

Đã lưu trong:
Chi tiết về thư mục
Xuất bản năm:Journal of Physics: Conference Series vol. 3141, no. 1 (Nov 2025), p. 012025
Tác giả chính: Chen, Li
Tác giả khác: Zhang, Xu, Ding, Keqin
Được phát hành:
IOP Publishing
Những chủ đề:
Truy cập trực tuyến:Citation/Abstract
Full Text - PDF
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!

MARC

LEADER 00000nab a2200000uu 4500
001 3273013095
003 UK-CbPIL
022 |a 1742-6588 
022 |a 1742-6596 
024 7 |a 10.1088/1742-6596/3141/1/012025  |2 doi 
035 |a 3273013095 
045 2 |b d20251101  |b d20251130 
100 1 |a Chen, Li 
245 1 |a Research on an intelligent monitoring and diagnosis system for fatigue damage in coke drums based on data-driven approaches 
260 |b IOP Publishing  |c Nov 2025 
513 |a Journal Article 
520 3 |a As critical high-temperature pressure equipment in the petrochemical industry, coke drums operate for extended periods under complex working conditions. Their structural health status directly impacts production safety and operational efficiency. This paper proposes an intelligent fatigue damage monitoring and diagnosis system based on strain data-driven methods. By collecting and analyzing multidimensional data such as strain and temperature in real time, the system rapidly constructs rainflow matrices and nonlinear cumulative damage models to achieve dynamic diagnosis of fatigue damage, health status classification, and remaining useful life prediction. The system integrates sensing, acquisition, transmission, and edge computing modules. Combined with multi-dimensional data acquisition software and an intelligent diagnosis visualization platform developed on the LabVIEW platform, it enables end-to-end intelligent management from data sensing to condition assessment. Engineering applications demonstrate that the system exhibits excellent reliability, stability, and engineering applicability, providing a feasible solution for structural health management of coke drums and other large-scale pressure equipment. 
653 |a Structural health monitoring 
653 |a Cumulative damage 
653 |a Multidimensional data 
653 |a Diagnosis 
653 |a Damage assessment 
653 |a Life prediction 
653 |a Fatigue failure 
653 |a Data acquisition 
653 |a Multidimensional methods 
653 |a Coke 
653 |a High temperature 
653 |a Edge computing 
700 1 |a Zhang, Xu 
700 1 |a Ding, Keqin 
773 0 |t Journal of Physics: Conference Series  |g vol. 3141, no. 1 (Nov 2025), p. 012025 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3273013095/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3273013095/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch