EEG-Based Stroke Rehabilitation: Enhancing Motor Imagery and Movement Classification

保存先:
書誌詳細
出版年:PQDT - Global (2025)
第一著者: Aung, Htoo Wai
出版事項:
ProQuest Dissertations & Theses
主題:
オンライン・アクセス:Citation/Abstract
Full Text - PDF
Full text outside of ProQuest
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 3273444068
003 UK-CbPIL
020 |a 9798263314835 
035 |a 3273444068 
045 2 |b d20250101  |b d20251231 
084 |a 189128  |2 nlm 
100 1 |a Aung, Htoo Wai 
245 1 |a EEG-Based Stroke Rehabilitation: Enhancing Motor Imagery and Movement Classification 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Stroke affects millions worldwide, leading to severe motor and cognitive impairments. Effective rehabilitation is essential but labor-intensive. Robotic exoskeletons integrated with Brain-Computer Interfaces (BCIs) using Electroencephalography (EEG) enable user-driven rehabilitation, reducing therapist workload. However, real-time EEG classification remains challenging due to signal complexity.This thesis develops EEG GLT-Net, a spectral Graph Neural Network (GNN) for real-time classification of EEG Motor Imagery (MI) signals at single time points ( 1/160 s). It introduces the EEG Graph Lottery Ticket (EEG GLT) method, which dynamically constructs adjacency matrices without prior knowledge of EEG channel relationships, improving accuracy and efficiency. Evaluation on PhysioNet shows superior performance over state-of-the-art (SOTA) methods.Beyond stroke rehabilitation, EEG GLT is applied to economic forecasting, demonstrating its adaptability. Additionally, EEG Synergistic Gated Network (EEG SGNet), a CNN-GNN hybrid, enhances window-based EEG classification, validated on BCIC iv-2a and HGD datasets. Lastly, EEG RL-Net, a reinforcement learning model, optimises classification by selectively skipping uncertain time points, improving computational efficiency.These contributions advance EEG-based rehabilitation, enabling intelligent, adaptive systems that enhance stroke recovery and broader neurorehabilitation applications. 
653 |a Stroke 
653 |a Artificial intelligence 
653 |a Electrodes 
653 |a Brain research 
653 |a Graph representations 
653 |a Neural networks 
653 |a Rehabilitation 
653 |a Interest rates 
653 |a Economic forecasting 
653 |a Clinical psychology 
653 |a Neurosciences 
653 |a Cognitive psychology 
773 0 |t PQDT - Global  |g (2025) 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3273444068/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3273444068/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://opus.lib.uts.edu.au/handle/10453/190556