From Phonons to Phase Stability: A Computational Approach to the Thermodynamics of CaMnO3-δ

Guardado en:
Bibliografiske detaljer
Udgivet i:PQDT - Global (2025)
Hovedforfatter: Gastaldi, Jonatan
Udgivet:
ProQuest Dissertations & Theses
Fag:
Online adgang:Citation/Abstract
Full Text - PDF
Full text outside of ProQuest
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3273462471
003 UK-CbPIL
020 |a 9798263315771 
035 |a 3273462471 
045 2 |b d20250101  |b d20251231 
084 |a 189128  |2 nlm 
100 1 |a Gastaldi, Jonatan 
245 1 |a <strong>From Phonons to Phase Stability: </strong><em>A Computational Approach to the Thermodynamics of CaMnO</em><sub><em>3-δ</em></sub> 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a The transition toward carbon-neutral energy systems requires efficient fuel conversion and carbon capture technologies. Chemical-looping combustion (CLC) enables inherent CO2 separation by using solid oxygen carriers that cyclically transfer oxygen between air and fuel reactors. The performance of these materials depends on their thermodynamic and electronic properties, which can be predicted through first-principles calculations.This thesis presents a density functional theory (DFT)–based framework for investigating the perovskite oxide CaMnO3-δ (0 ≤ δ ≤ 0.5), a promising oxygen carrier for CLC applications. Using total energy and phonon calculations, thermodynamic quantities such as heat capacities, formation enthalpies, and Gibbs free energies were estimated and related to oxygen vacancy formation. The results reveal how increasing oxygen deficiency affects phase stability and electronic structure, including a transition from semiconducting to metallic behaviour and a reduction of Mn oxidation states.The computed formation enthalpies were combined with experimental thermodynamic data to construct a phase diagram of the Ca-Mn-O system, providing insight into redox stability under CLC conditions. The developed computational framework links atomic-scale modelling to macroscopic material behaviour and offers a foundation for the predictive design of doped or related perovskite oxygen carriers. 
653 |a Crystal structure 
653 |a Machine learning 
653 |a Integer programming 
653 |a Materials science 
653 |a Thermodynamics 
653 |a Oxidation 
653 |a Emissions 
653 |a Carbon dioxide 
653 |a Symmetry 
653 |a Heat 
653 |a Metal oxides 
653 |a Energy 
653 |a Emission standards 
653 |a 20th century 
653 |a Entropy 
773 0 |t PQDT - Global  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3273462471/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3273462471/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://research.chalmers.se/en/publication/548984