Inference of cell-type composition and single-cell spatial maps from spatial transcriptomics data with SWOT

Salvato in:
Dettagli Bibliografici
Pubblicato in:Communications Biology vol. 8, no. 1 (2025), p. 1611-1627
Autore principale: Wang, Lanying
Altri autori: Hu, Yuxuan, Gao, Lin
Pubblicazione:
Nature Publishing Group
Soggetti:
Accesso online:Citation/Abstract
Full Text
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3273600412
003 UK-CbPIL
022 |a 2399-3642 
024 7 |a 10.1038/s42003-025-09001-y  |2 doi 
035 |a 3273600412 
045 2 |b d20250101  |b d20251231 
100 1 |a Wang, Lanying  |u School of Computer Science and Technology, Xidian University, Xi’an, China (ROR: https://ror.org/05s92vm98) (GRID: grid.440736.2) (ISNI: 0000 0001 0707 115X) 
245 1 |a Inference of cell-type composition and single-cell spatial maps from spatial transcriptomics data with SWOT 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a Spatially resolved single-cell transcriptomics is crucial for mapping the cellular atlas of organisms, but many spatial transcriptomics data lack single-cell resolution. Most cell-type deconvolution methods are limited to estimating cell-type proportions, and they cannot further identify the exact cells needed to reconstruct a single-cell spatial map. To overcome this limitation, we introduce a spatially weighted optimal transport method, named SWOT, for learning a mapping from cells to spots to infer both cell-type composition and single-cell spatial maps from spot-based spatial transcriptomics data. Experimental results demonstrate that the learned cell-to-spot mapping offers advantages in estimating cell-type proportions, cell numbers per spot, and spatial coordinates per cell. SWOT also depicts cell-type spatial distributions and maps single cells to their spatial locations in different morphological tissues. We further showcase the utility of SWOT in assistance of accurately identifying and functionally annotating cellular neighborhoods for deciphering tissue architecture. In summary, SWOT represents a useful tool for transforming abundant spot-resolution spatial transcriptomics data into single-cell resolution, thereby facilitating cell-level discoveries within tissues.SWOT infers cell-type composition and single-cell spatial maps from spatial transcriptomics data, transforms abundant spot-resolution data into single-cell resolution, and promotes cell-level discoveries within tissues. 
653 |a Cells 
653 |a Mapping 
653 |a Gene expression 
653 |a Spatial distribution 
653 |a Methods 
653 |a Datasets 
653 |a Transcriptomics 
653 |a Estimates 
700 1 |a Hu, Yuxuan  |u School of Computer Science and Technology, Xidian University, Xi’an, China (ROR: https://ror.org/05s92vm98) (GRID: grid.440736.2) (ISNI: 0000 0001 0707 115X) 
700 1 |a Gao, Lin  |u School of Computer Science and Technology, Xidian University, Xi’an, China (ROR: https://ror.org/05s92vm98) (GRID: grid.440736.2) (ISNI: 0000 0001 0707 115X) 
773 0 |t Communications Biology  |g vol. 8, no. 1 (2025), p. 1611-1627 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3273600412/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3273600412/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3273600412/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch