Deep Binaural Direction of Arrival Estimation An Experimental Analysis

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:PQDT - Global (2025)
Váldodahkki: Reed-Jones, Jago T.
Almmustuhtton:
ProQuest Dissertations & Theses
Fáttát:
Liŋkkat:Citation/Abstract
Full Text - PDF
Full text outside of ProQuest
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!

MARC

LEADER 00000nab a2200000uu 4500
001 3273605807
003 UK-CbPIL
020 |a 9798263313890 
035 |a 3273605807 
045 2 |b d20250101  |b d20251231 
084 |a 189128  |2 nlm 
100 1 |a Reed-Jones, Jago T. 
245 1 |a Deep Binaural Direction of Arrival Estimation An Experimental Analysis 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a The objective of binaural direction of arrival (DoA) estimation is to find the DoA of a sound source by measuring the sound field with a binaural array. This field increasingly applies deep learning to this task, particularly convolutional neural networks which are trained on relatively raw representations of the binaural audio. This work investigates the field, establishing common trends among different publications, particularly in the data preparation, scrutinising these trends for instances of the emergence of collective wisdom without empirical backing. Based on this, an experimental evaluation is performed to gain insight into the efficacy of different existing and novel techniques, based on a recurring testing framework.Such experimental evaluations are undertaken for several topics: an analysis of acoustic conditions on the performance of binaural DoA estimation, a broad empirical study on binaural feature representations to be used with convolutional neural networks (CNNs), the proposal and comparison of convolutional recurrent neural network (CRNN) models for binaural DoA estimation, and an investigation into binaural DoA estimation in the mismatched anechoic condition; referring to a mismatch in head-related transfer function (HRTF) measurements between training and testing datasets for an identical binaural array.The findings in this thesis lead to recommendations for more effectively using deep neural networks for binaural DoA estimation, while also demonstrating the limited ability of such systems to generalise to unseen binaural data when using simulated binaural datasets which are limited in their scope. 
653 |a Fourier transforms 
653 |a Signal to noise ratio 
653 |a Signal processing 
653 |a Neural networks 
653 |a Robotics 
653 |a Artificial intelligence 
653 |a Computer engineering 
773 0 |t PQDT - Global  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3273605807/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3273605807/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://researchonline.ljmu.ac.uk/id/eprint/26709