Rapid and accurate classification of mung bean seeds based on HPMobileNet

Guardado en:
書目詳細資料
發表在:Frontiers in Plant Science vol. 15 (Feb 2025), p. 1474906-1474927
主要作者: Song, Shaozhong
其他作者: Chen, Zhenyang, Yu, Helong, Xue, Mingxuan, Liu, Junling
出版:
Frontiers Media SA
主題:
在線閱讀:Citation/Abstract
Full Text
Full Text - PDF
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!

MARC

LEADER 00000nab a2200000uu 4500
001 3273779655
003 UK-CbPIL
022 |a 1664-462X 
024 7 |a 10.3389/fpls.2024.1474906  |2 doi 
035 |a 3273779655 
045 2 |b d20250201  |b d20250228 
100 1 |a Song, Shaozhong  |u School of Data Science and Artificial Intelligence, Jilin Engineering Normal University, Changchun, China, Smart Agriculture Research Institute, Jilin Agricultural University, Changchun, China, College of Information Technology, Jilin Agricultural University, Changchun, China 
245 1 |a Rapid and accurate classification of mung bean seeds based on HPMobileNet 
260 |b Frontiers Media SA  |c Feb 2025 
513 |a Journal Article 
520 3 |a Mung bean seeds are very important in agricultural production and food processing, but due to their variety and similar appearance, traditional classification methods are challenging, to address this problem this study proposes a deep learning-based approach. In this study, based on the deep learning model MobileNetV2, a DMS block is proposed for mung bean seeds, and by introducing the ECA block and Mish activation function, a high-precision network model, i.e., HPMobileNet, is proposed, which is explored to be applied in the field of image recognition for the fast and accurate classification of different varieties of mung bean seeds. In this study, eight different varieties of mung bean seeds were collected and a total of 34,890 images were obtained by threshold segmentation and image enhancement techniques. HPMobileNet was used as the main network model, and by training and fine-tuning on a large-scale mung bean seed image dataset, efficient feature extraction classification and recognition capabilities were achieved. The experimental results show that HPMobileNet exhibits excellent performance in the mung bean seed grain classification task, with the accuracy improving from 87.40% to 94.01% on the test set, and compared with other classical network models, the results show that HPMobileNet achieves the best results. In addition, this study analyzes the impact of the learning rate dynamic adjustment strategy on the model and explores the potential for further optimization and application in the future. Therefore, this study provides a useful reference and empirical basis for the development of mung bean seed classification and smart agriculture technology. 
653 |a Accuracy 
653 |a Deep learning 
653 |a Datasets 
653 |a Classification 
653 |a Discriminant analysis 
653 |a Agricultural technology 
653 |a Digital agriculture 
653 |a Image processing 
653 |a Food processing 
653 |a Machine learning 
653 |a Seeds 
653 |a Beans 
653 |a Raw materials 
653 |a Food processing industry 
653 |a Spectrum analysis 
653 |a Image enhancement 
653 |a Image segmentation 
653 |a Computer vision 
653 |a Neural networks 
653 |a Support vector machines 
653 |a Impact analysis 
653 |a Agricultural production 
653 |a Algorithms 
653 |a Economic 
653 |a Vigna radiata 
700 1 |a Chen, Zhenyang  |u Smart Agriculture Research Institute, Jilin Agricultural University, Changchun, China 
700 1 |a Yu, Helong  |u Smart Agriculture Research Institute, Jilin Agricultural University, Changchun, China, College of Information Technology, Jilin Agricultural University, Changchun, China 
700 1 |a Xue, Mingxuan  |u Smart Agriculture Research Institute, Jilin Agricultural University, Changchun, China, College of Information Technology, Jilin Agricultural University, Changchun, China 
700 1 |a Liu, Junling  |u School of Data Science and Artificial Intelligence, Jilin Engineering Normal University, Changchun, China 
773 0 |t Frontiers in Plant Science  |g vol. 15 (Feb 2025), p. 1474906-1474927 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3273779655/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3273779655/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3273779655/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch