Potato precision planter metering system based on improved YOLOv5n-ByteTrack

Gardado en:
Detalles Bibliográficos
Publicado en:Frontiers in Plant Science vol. 16 (Apr 2025), p. 1563551-1563565
Autor Principal: Xiao, Cisen
Outros autores: Song, Changlin, Li, Junmin, Liao, Min, Pu, Yongfan, Du, Kun
Publicado:
Frontiers Media SA
Materias:
Acceso en liña:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3273781585
003 UK-CbPIL
022 |a 1664-462X 
024 7 |a 10.3389/fpls.2025.1563551  |2 doi 
035 |a 3273781585 
045 2 |b d20250401  |b d20250430 
100 1 |a Xiao, Cisen  |u School of Computer and Software Engineering, Xihua University, Chengdu, China 
245 1 |a Potato precision planter metering system based on improved YOLOv5n-ByteTrack 
260 |b Frontiers Media SA  |c Apr 2025 
513 |a Journal Article 
520 3 |a Accurate assessment of the planting effect is crucial during the potato cultivation process. Currently, manual statistical methods are inefficient and challenging to evaluate in real-time. To address this issue, this study proposes a detection algorithm for the potato planting machine’s seed potato scooping scene, based on an improved lightweight YOLO v5n model. Initially, the C3-Faster module is introduced, which reduces the number of parameters and computational load while maintaining detection accuracy. Subsequently, re-parameterized convolution (RepConv) is incorporated into the feature extraction network architecture, enhancing the model’s inference speed by leveraging the correlation between features. Finally, to further improve the efficiency of the model for mobile applications, layer-adaptive magnitude-based pruning (LAMP) technology is employed to eliminate redundant channels with minimal impact on performance. The experimental results indicate that: 1) The improved YOLOv5n model exhibits a 56.8% reduction in parameters, a 56.1% decrease in giga floating point operations per second (GFLOPs), a 51.4% reduction in model size, and a 37.0% reduction in Embedded Device Inference Time compared to the YOLOv5n model. Additionally, the mean average precision (mAP) at mAP@0.5 achieves up to 98.0%. 2) Compared with the YOLO series model, mAP@0.5 is close, and the parameters, GFLOPs, and model size are significantly decreased. 3) Combining the ByteTrack algorithm and counting method, the accuracy of counting reaches 96.6%. Based on these improvements, we designed a potato precision planter metering system that supports real-time monitoring of omission, replanting, and qualified casting during the planting process. This system provides effective support for potato precision planting and offers a visual representation of the planting outcomes, demonstrating its practical value for the industry. 
653 |a Planting 
653 |a Accuracy 
653 |a Datasets 
653 |a Deep learning 
653 |a Agricultural production 
653 |a Potatoes 
653 |a Food 
653 |a Applications programs 
653 |a Algorithms 
653 |a Mobile computing 
653 |a Statistical methods 
653 |a Floating point arithmetic 
653 |a Plant diseases 
653 |a Agriculture 
653 |a Cameras 
653 |a Inference 
653 |a Object recognition 
653 |a Real time 
653 |a Parameters 
653 |a Economic 
700 1 |a Song, Changlin  |u School of Mechanical Engineering, Xihua University, Chengdu, China 
700 1 |a Li, Junmin  |u School of Mechanical Engineering, Xihua University, Chengdu, China 
700 1 |a Liao, Min  |u School of Mechanical Engineering, Xihua University, Chengdu, China 
700 1 |a Pu, Yongfan  |u School of Mechanical Engineering, Xihua University, Chengdu, China 
700 1 |a Du, Kun  |u School of Mechanical Engineering, Xihua University, Chengdu, China 
773 0 |t Frontiers in Plant Science  |g vol. 16 (Apr 2025), p. 1563551-1563565 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3273781585/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3273781585/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3273781585/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch