Automated seed counting using image processing and deep learning

Guardat en:
Dades bibliogràfiques
Publicat a:Frontiers in Plant Science vol. 16 (Aug 2025), p. 1659781-1659797
Autor principal: Zu, Qiuyu
Altres autors: Liu, Teng, Zhu, Wenpeng, Pan, Yan, Wang, Jinxu, Song, Xinru, Yu, Jialin, Dang, Shu, Yu, Xiaoming, Zhang, Zhenyu
Publicat:
Frontiers Media SA
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3273795074
003 UK-CbPIL
022 |a 1664-462X 
024 7 |a 10.3389/fpls.2025.1659781  |2 doi 
035 |a 3273795074 
045 2 |b d20250801  |b d20250831 
100 1 |a Zu, Qiuyu  |u School of Agriculture, Jilin Agricultural Science and Technology College, Jilin City, China, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China 
245 1 |a Automated seed counting using image processing and deep learning 
260 |b Frontiers Media SA  |c Aug 2025 
513 |a Journal Article 
520 3 |a IntroductionAccurate seed counting is an essential task in agricultural research and farming, supporting activities such as crop breeding, yield prediction, and weed management. Traditional manual seed counting, while accurate, is time-consuming, labor-intensive, and prone to human error, particularly for large quantities of micro-sized seeds.MethodsThis study developed two automated computer vision approaches integrated into a mobile application (app) for seed counting: one utilizing image processing (IP) and the other based on deep learning (DL). These methods aim to address the limitations of traditional manual counting by providing automated, efficient alternatives.ResultsThe IP-based method demonstrated high accuracy comparable to manual counting and offered substantial time savings. However, its reliance on controlled environmental conditions, such as uniform lighting, limits its versatility for field apps. The DL-based method excelled in speed and scalability, processing counts in as little as 0.33 seconds per image, but its accuracy was inconsistent for visually complex or densely clustered seeds.DiscussionBoth automated methods significantly enhance the efficiency of seed counting, providing a practical and accessible solution for various agricultural contexts. The integration of these methods into a mobile app streamlines seed counting for laboratory research, field studies, seed production, and breeding trials, offering a transformative approach to modernizing seed counting practices while reducing time and labor requirements. 
651 4 |a United States--US 
651 4 |a Kentucky 
653 |a Accuracy 
653 |a Deep learning 
653 |a Plant breeding 
653 |a Applications programs 
653 |a Agricultural research 
653 |a Weed control 
653 |a Corn 
653 |a Mobile computing 
653 |a Environmental conditions 
653 |a Crops 
653 |a Image processing 
653 |a Computer vision 
653 |a Automation 
653 |a Efficiency 
653 |a Seeds 
653 |a Modernization 
653 |a Lighting 
653 |a Labor 
653 |a Methods 
653 |a Human error 
653 |a Environmental 
700 1 |a Liu, Teng  |u Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China 
700 1 |a Zhu, Wenpeng  |u Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China 
700 1 |a Pan, Yan  |u Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China 
700 1 |a Wang, Jinxu  |u Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China 
700 1 |a Song, Xinru  |u Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China 
700 1 |a Yu, Jialin  |u Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China 
700 1 |a Dang, Shu  |u School of Agriculture, Jilin Agricultural Science and Technology College, Jilin City, China 
700 1 |a Yu, Xiaoming  |u School of Agriculture, Jilin Agricultural Science and Technology College, Jilin City, China 
700 1 |a Zhang, Zhenyu  |u School of Agriculture, Jilin Agricultural Science and Technology College, Jilin City, China 
773 0 |t Frontiers in Plant Science  |g vol. 16 (Aug 2025), p. 1659781-1659797 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3273795074/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3273795074/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3273795074/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch