Lightweight rice leaf spot segmentation model based on improved DeepLabv3+

Guardado en:
Bibliografiske detaljer
Udgivet i:Frontiers in Plant Science vol. 16 (Aug 2025), p. 1635302-1635321
Hovedforfatter: Li, Jianian
Andre forfattere: Long, Gao, Wang, Xiaocheng, Fang, Jiaoli, Su, Zeyang, Li, Yuecong, Chen, Shaomin
Udgivet:
Frontiers Media SA
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3273795299
003 UK-CbPIL
022 |a 1664-462X 
024 7 |a 10.3389/fpls.2025.1635302  |2 doi 
035 |a 3273795299 
045 2 |b d20250801  |b d20250831 
100 1 |a Li, Jianian  |u Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, China 
245 1 |a Lightweight rice leaf spot segmentation model based on improved DeepLabv3+ 
260 |b Frontiers Media SA  |c Aug 2025 
513 |a Journal Article 
520 3 |a IntroductionRice is an important food crop but is susceptible to diseases. However, currently available spot segmentation models have high computational overhead and are difficult to deploy in field environments.MethodsTo address these limitations, a lightweight rice leaf spot segmentation model (MV3L-MSDE-PGFF-CA-DeepLabv3+, MMPC-DeepLabv3+) was developed for three common rice leaf diseases: rice blast, brown spot and bacterial leaf blight. First, the lightweight feature extraction network MobileNetV3_Large (MV3L) was adopted as the backbone of the model. Second, based on Haar wavelet downsampling, a multi-scale detail enhancement (MSDE) module was proposed to improve decision-making ability of the model in transitional regions such as spot gaps, and to improve the sticking and blurring problems at the boundary of spot segmentation. Meanwhile, the PagFm-Ghostconv Feature Fusion (PGFF) module was proposed to significantly reduce the computational overhead of the model. Furthermore, coordinate attention (CA) mechanism was incorporated before the PGFF module to improve robustness of the model in complex environments. A hybrid loss function integrating Focal Loss and Dice Loss was ultimately proposed to mitigate class imbalance between disease and background pixels in rice disease imagery.ResultsValidated on rice disease images captured under natural illumination conditions, the MMCP-DeepLabv3+ model achieved a mean intersection over union (MIoU) of 81.23% and mean pixel accuracy (MPA) of 89.79%, with floating-point operations (Flops) and the number of model parameters (Params) reduced to 9.695 G and 3.556 M, respectively. Compared to the baseline DeepLabv3+, this represents a 1.89% improvement in MIoU, a 0.83% increase in MPA, alongside 93.1% and 91.6% reductions in Flops and Params.DiscussionThe MMPC-DeepLabv3+ model demonstrated superior performance over DeepLabv3+, U-Net, PSPNet, HRNetV2, and SegFormer, achieving an optimal balance between recognition accuracy and computational efficiency, which establishes a novel paradigm for rice lesion segmentation in precision agriculture. 
653 |a Feature extraction 
653 |a Accuracy 
653 |a Datasets 
653 |a Segmentation 
653 |a Leafspot 
653 |a Leaves 
653 |a Computer applications 
653 |a Crop diseases 
653 |a Modules 
653 |a Rice blast 
653 |a Brown spot 
653 |a Floating point arithmetic 
653 |a Plant diseases 
653 |a Agriculture 
653 |a Pixels 
653 |a Computer vision 
653 |a Precision agriculture 
653 |a Neural networks 
653 |a Rice 
653 |a Algorithms 
653 |a Leaf blight 
653 |a Decision making 
653 |a Semantics 
653 |a Environmental 
700 1 |a Long, Gao  |u Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, China 
700 1 |a Wang, Xiaocheng  |u Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, China 
700 1 |a Fang, Jiaoli  |u Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China 
700 1 |a Su, Zeyang  |u Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, China 
700 1 |a Li, Yuecong  |u Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, China 
700 1 |a Chen, Shaomin  |u Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, China 
773 0 |t Frontiers in Plant Science  |g vol. 16 (Aug 2025), p. 1635302-1635321 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3273795299/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3273795299/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3273795299/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch