Dynamic optimization of stand structure in Pinus yunnanensis secondary forests based on deep reinforcement learning and structural prediction

Salvato in:
Dettagli Bibliografici
Pubblicato in:Frontiers in Plant Science vol. 16 (Oct 2025), p. 1610571-1610595
Autore principale: Zhao, Jian
Altri autori: Wang, Jianming, Yin, Jiting, Chen, Yuling, Wu, Baoguo
Pubblicazione:
Frontiers Media SA
Soggetti:
Accesso online:Citation/Abstract
Full Text
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3273797203
003 UK-CbPIL
022 |a 1664-462X 
024 7 |a 10.3389/fpls.2025.1610571  |2 doi 
035 |a 3273797203 
045 2 |b d20251001  |b d20251031 
100 1 |a Zhao, Jian  |u School of Mathematics and Computer Science, Dali University, Dali, China 
245 1 |a Dynamic optimization of stand structure in Pinus yunnanensis secondary forests based on deep reinforcement learning and structural prediction 
260 |b Frontiers Media SA  |c Oct 2025 
513 |a Journal Article 
520 3 |a IntroductionThe rational structure of forest stands plays a crucial role in maintaining ecosystem functions, enhancing community stability, and ensuring sustainable management. Although progress has been made in stand structure optimization, most existing studies focus on static improvements and fail to adequately capture the dynamic nature of stand development. In addition, commonly used heuristic and traditional methods often suffer from limitations in computational efficiency and generalization ability.MethodsTo address these challenges, this study explores the potential and advantages of multi-agent deep reinforcement learning in forest management, offering innovative insights and methods for achieving sustainable forest ecosystem management. Using the secondary forests of Pinus yunnanensis in southwest China as the research subject, we constructed an objective function and constraints based on spatial and non-spatial structure indexes. Selective harvesting and replanting were employed as optimization measures, and experiments were conducted on five circular plots to compare the performance of multi-agent deep reinforcement learning with that of multi-agent reinforcement learning. To account for the dynamic characteristics of stand structure, we further integrated structure prediction with multi-agent deep reinforcement learning for dynamic optimization across the five plots.ResultsThe results indicate that multi agent deep reinforcement learning consistently outperformed multi agent reinforcement learning across all plots. For the initial objective function values of each plot (0.3501, 0.3799, 0.3982, 0.3344, 0.4294), the optimized results obtained through multi agent deep reinforcement learning (0.5378, 0.5861, 0.5860, 0.5130, 0.6034) were significantly superior to the maximum objective function values achieved by multi agent reinforcement learning (0.5302, 0.5369, 0.5766, 0.5014, 0.5906). Furthermore, the dynamic optimization results incorporating structure prediction demonstrate that all plots progressively approached an ideal stand condition over multiple optimization cycles (0.5718, 0.6101, 0.6455, 0.5863, 0.6210), leading to a more balanced stand structure and improved long-term stability.DiscussionThis study proposes a novel stand structure optimization method that integrates multi agent deep reinforcement learning with structure prediction, providing theoretical support and practical guidance for the sustainable management of Pinus yunnanensis secondary forests. 
651 4 |a Yunnan China 
651 4 |a China 
653 |a Forest management 
653 |a Stand structure 
653 |a Collaboration 
653 |a Deep learning 
653 |a Sustainability management 
653 |a Trends 
653 |a Optimization 
653 |a Biodiversity 
653 |a Ecological function 
653 |a Dynamic characteristics 
653 |a Heuristic 
653 |a Forests 
653 |a Ecosystem management 
653 |a Efficiency 
653 |a Growth models 
653 |a Pine trees 
653 |a Sustainable forestry 
653 |a Precipitation 
653 |a Forest ecosystems 
653 |a Predictions 
653 |a Objective function 
653 |a Trees 
653 |a Terrestrial ecosystems 
653 |a Learning 
653 |a Multiagent systems 
653 |a Stability 
653 |a Algorithms 
653 |a Economic 
653 |a Pinus yunnanensis 
700 1 |a Wang, Jianming  |u School of Mathematics and Computer Science, Dali University, Dali, China 
700 1 |a Yin, Jiting  |u Dali Forestry and Grassland Science Research Institute, Dali, China 
700 1 |a Chen, Yuling  |u Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University, Beijing, China 
700 1 |a Wu, Baoguo  |u School of Information Science and Technology, Beijing Forestry University, Beijing, China 
773 0 |t Frontiers in Plant Science  |g vol. 16 (Oct 2025), p. 1610571-1610595 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3273797203/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3273797203/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3273797203/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch