Delaying Candidatus Liberibacter asiaticus infection of citrus trees through use of individual protective covers and systemic delivery of oxytetracycline

Guardat en:
Dades bibliogràfiques
Publicat a:Frontiers in Plant Science vol. 16 (Oct 2025), p. 1671217-1671238
Autor principal: Tardivo, Caroline
Altres autors: Monus, Brittney, Pugina, Gabriel, Strauss, Sarah L, Alferez, Fernando, Albrecht, Ute
Publicat:
Frontiers Media SA
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3273798089
003 UK-CbPIL
022 |a 1664-462X 
024 7 |a 10.3389/fpls.2025.1671217  |2 doi 
035 |a 3273798089 
045 2 |b d20251001  |b d20251031 
100 1 |a Tardivo, Caroline  |u Horticultural Sciences Department, University of Florida/IFAS, Southwest Florida Research and Education Center, Immokalee, FL, United States 
245 1 |a Delaying Candidatus Liberibacter asiaticus infection of citrus trees through use of individual protective covers and systemic delivery of oxytetracycline 
260 |b Frontiers Media SA  |c Oct 2025 
513 |a Journal Article 
520 3 |a Huanglongbing (HLB), or citrus greening, remains one of the most destructive diseases affecting citrus production globally. Associated with the phloem-limited bacterium Candidatus Liberibacter asiaticus ( C Las) and vectored by Diaphorina citri , HLB leads to canopy decline, fibrous root loss, and reductions in fruit yield and quality. Recently, the systemic delivery of oxytetracycline (OTC) via trunk injection was approved in Florida as a targeted therapy to reduce C Las titers and improve tree health. In parallel, Individual Protective Covers (IPCs) have been adopted to delay C Las infection in newly planted citrus trees by vector exclusion. This study investigates the combined use of IPCs and trunk injection of OTC for post-IPC therapy. ‘Valencia’ sweet orange trees grafted on US-812 and US-942 rootstocks were planted in December 2020 under HLB-endemic conditions in southwest Florida. IPCs were installed at planting and removed after 18 months. The first OTC injection was performed in May 2023, 10 months after IPC removal. A second injection was performed in May 2024. A 2 × 2 × 2 factorial experimental design evaluated the effects of infection history (early-infected and late-infected), rootstock cultivar (US-812 and US-942), and injection treatment (OTC-injected and non-injected) on tree responses over two consecutive production seasons. In year 1, infection history significantly influenced tree size, fruit yield, total soluble solids (TSS), TSS/titratable acidity ratio, and peel color. Late-infected trees outperformed early-infected trees, regardless of injection treatment and rootstock cultivar. In year 2, OTC-injected trees exhibited significantly higher yields, improved juice quality, and enhanced canopy health regardless of infection history and rootstock cultivar. Fibrous root microbiome analyses based on 16S rRNA sequencing revealed no significant effects of OTC injection on bacterial alpha or beta diversity, with stable community structure observed across treatments and time points. This suggests that targeted vascular delivery of OTC may not cause any major disruption to the root endorhizosphere microbiome. Together, the results from this study demonstrate the efficacy of integrating preventative (use of IPCs) and therapeutic (OTC vascular delivery) strategies for sustainable HLB management while preserving microbial integrity and offering a model for citrus production in parts of the world where HLB is prevalent. 
651 4 |a Florida 
651 4 |a United States--US 
653 |a Infections 
653 |a Community structure 
653 |a rRNA 16S 
653 |a Crop yield 
653 |a Oxytetracycline 
653 |a Experimental design 
653 |a Citrus fruits 
653 |a Citrus greening 
653 |a Canopies 
653 |a Insecticides 
653 |a Plant bacterial diseases 
653 |a Fruit trees 
653 |a Injection 
653 |a Citrus trees 
653 |a Plant diseases 
653 |a Cultivars 
653 |a Fruits 
653 |a Bacterial diseases 
653 |a Microbiomes 
653 |a Bacteria 
653 |a Trees 
653 |a Microorganisms 
653 |a Antibiotics 
653 |a Design of experiments 
653 |a Rootstocks 
653 |a Integrated approach 
653 |a Candidatus Liberibacter asiaticus 
653 |a Environmental 
700 1 |a Monus, Brittney  |u Department of Soil, Water, and Ecosystem Sciences, University of Florida/IFAS, Southwest Florida Research and Education Center, Immokalee, FL, United States 
700 1 |a Pugina, Gabriel  |u Horticultural Sciences Department, University of Florida/IFAS, Southwest Florida Research and Education Center, Immokalee, FL, United States 
700 1 |a Strauss, Sarah L  |u Department of Soil, Water, and Ecosystem Sciences, University of Florida/IFAS, Southwest Florida Research and Education Center, Immokalee, FL, United States 
700 1 |a Alferez, Fernando  |u Horticultural Sciences Department, University of Florida/IFAS, Southwest Florida Research and Education Center, Immokalee, FL, United States 
700 1 |a Albrecht, Ute  |u Horticultural Sciences Department, University of Florida/IFAS, Southwest Florida Research and Education Center, Immokalee, FL, United States 
773 0 |t Frontiers in Plant Science  |g vol. 16 (Oct 2025), p. 1671217-1671238 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3273798089/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3273798089/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3273798089/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch