: looking for a needle in a haystack: a content-based video big data retrieval system in the cloud

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Big Data vol. 12, no. 1 (Nov 2025), p. 257
Hlavní autor: Khan, Muhammad Numan
Další autoři: Alam, Aftab, Lee, Young-Koo
Vydáno:
Springer Nature B.V.
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3274262822
003 UK-CbPIL
022 |a 2196-1115 
024 7 |a 10.1186/s40537-025-01308-1  |2 doi 
035 |a 3274262822 
045 2 |b d20251101  |b d20251130 
100 1 |a Khan, Muhammad Numan  |u Kyung-Hee University, Department of Computer Science and Engineering, Yongin-si, Republic of Korea (GRID:grid.289247.2) (ISNI:0000 0001 2171 7818) 
245 1 |a : looking for a needle in a haystack: a content-based video big data retrieval system in the cloud 
260 |b Springer Nature B.V.  |c Nov 2025 
513 |a Journal Article 
520 3 |a The rapid proliferation of video data from various sources underscore the pressing need for effective Content-based Video Retrieval (CBVR) systems. Traditional retrieval methodologies are increasingly inadequate for managing the complexities and scale of video big data, which necessitates the development of advanced distributed computing frameworks. This study identifies and addresses critical challenges in CBVR , specifically the implementation of lambda architecture for the retrieval of both streaming and batch video data, the enhancement of in-memory analytics for video data structures, and the efficient indexing of heterogeneous video features. We propose , a novel scale-out system which integrates state-of-the-art big data technologies with deep learning algorithms. The system architecture is inspired by lambda principles and is designed to facilitate both near real-time and offline video indexing and retrieval. Key contributions of this research include: (1) the formulation of a lambda-style architecture tailored for video big data, (2) the development of an in-memory processing framework that provides a high-level abstraction for video analytics, (3) the introduction of a unified distributed indexer, termed Distributed Encoded Deep Feature Indexer (DEFI), capable of indexing multi-type features from both streaming and batch video datasets, and (4) a comprehensive bottleneck analysis of the proposed system. Performance evaluations utilizing three benchmark datasets demonstrate the system’s effectiveness, revealing insights into performance bottlenecks related to storage, video stream acquisition, processing, and indexing. This research provides a foundational framework for scalable and efficient video analytics, significantly advancing the state-of-the-art in cloud-based CBVR systems. 
653 |a Data processing 
653 |a Metadata 
653 |a Deep learning 
653 |a Performance evaluation 
653 |a Big Data 
653 |a Computer architecture 
653 |a Memory 
653 |a Retrieval 
653 |a Architecture 
653 |a Indexing 
653 |a Batch processing 
653 |a Machine learning 
653 |a Video recordings 
653 |a Data retrieval 
653 |a Distributed processing 
653 |a Measures 
653 |a Storage 
653 |a Datasets 
653 |a Computer memory 
653 |a Data structures 
653 |a Cloud computing 
653 |a Effectiveness 
653 |a Frame analysis 
653 |a Design 
653 |a Video data 
653 |a Real time 
653 |a Semantics 
653 |a Information retrieval 
700 1 |a Alam, Aftab  |u Kyung-Hee University, Department of Computer Science and Engineering, Yongin-si, Republic of Korea (GRID:grid.289247.2) (ISNI:0000 0001 2171 7818) 
700 1 |a Lee, Young-Koo  |u Kyung-Hee University, Department of Computer Science and Engineering, Yongin-si, Republic of Korea (GRID:grid.289247.2) (ISNI:0000 0001 2171 7818) 
773 0 |t Journal of Big Data  |g vol. 12, no. 1 (Nov 2025), p. 257 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3274262822/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3274262822/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3274262822/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch